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Abstract 
This study presents a detailed derivation of a trigonometric identity governing the 
optimal scaling of a regular m-gon inscribed within a regular n-gon underdouble-contact 
constraints. Building on prior work that established containment inequalities for nested 
polygons in the complex plane, we focus on the symmetric configuration where 
rotational and vertical translation components vanish (b = 0, d = 0). In this setting, we 
derive a closed-form expression for the scaling factor c by equating two distinct contact 
conditions involving edge-vertex interactions. The resulting identity incorporates cosine 
and cotangent terms and reveals how geometric symmetry leads to algebraic 
simplification. We also provide a long-form factorization and numerical examples to 
illustrate the identity’s behavior across different polygon pairs. This work contributes to 
the broader theory of polygonal optimization and symbolic encoding in geometric 
configurations. 
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1. INTRODUCTION 

 

Geometry has long served as a bridge between scientific reasoning and artistic 
expression. From ancient civilizations such as Egypt and Mesopotamia to classical 
Greece, geometric principles were used to encode cosmic order and architectural 
harmony. Thinkers like Pythagoras and Euclid formalized foundational ideas through 
symmetry, proportion, and regular polygons. In the Islamic world, particularly during 
the Seljuk and Ottoman periods, geometry evolved into both a scientific tool and a 
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spiritual medium. Intricate polygonal patterns in mosques and madrasas symbolized 
infinite repetition and divine unity [1, 8, 11]. 

In modern science and engineering, geometric modeling plays a central role in fields 
such as computer-aided design, materials science, and architectural optimization. 
Regular polygons, due to their inherent symmetry, are ideal candidates for nesting and 
packing problems. Numerous studies have explored how to inscribe one polygon within 
another to maximize area or minimize perimeter under geometric constraints [4, 5, 7, 
12]. These problems have practical applications in solar energy systems [2, 3], cutting 
and packing algorithms [9, 10], and symbolic design 

While traditional approaches rely heavily on coordinate geometry and trigonometric 
identities, such methods can become cumbersome when addressing rotational symmetry and 
complex transformations. Representing polygon vertices in the complex plane offers a more 
elegant and unified framework. Complex numbers allow scaling, rotation, and translation to 
be expressed algebraically, simplifying constraint formulation and enhancing analytical 
tractability. 

Recent advances have introduced algorithmic and analytical techniques for inscribed polygon 
optimization. Notable contributions include dynamic programming for convex k-gons [14], 
maximum-area configurations in closed regions [16], and heuristic solutions for geometric 
enclosure problems [17]. Studies on rectangular and triangular optimization further highlight 
the computational depth of these problems [6, 12]. 

Building on this foundation, our previous work [13] introduced a complex-numberbased 
inequality for determining whether a regular m-gon is fully contained within a regular n-gon. 
In the present study, we extend that framework by analyzing double-contact configurations—
cases where two distinct vertices of the inner polygon simultaneously touch two edges of the 
outer polygon. This leads to a new trigonometric identity for the scaling factor, derived under 
symmetry and alignment constraints. 

 

2.  Background and Prior Framework 

This study builds upon the geometric and algebraic framework introduced in our earlier 
publication, Optimal Positioning of Regular Polygons under Area Constraints [13]. In 
that work, we investigated how a regular m-gon can be optimally inscribed within a 
regular n-gon to maximize its area, under strict containment conditions. 

The polygons were modeled in the complex plane: the outer n-gon was centered at the 
origin with unit circumradius, and the inner m-gon was allowed to scale, rotate, and 
translate. Each vertex of the outer polygon was represented as z௞  = 𝑒ଶ஠୧୩/୬ while the 
inner polygon was expressed as wℓ = θ + λ𝑒ଶ஠୧ℓ/୫ , where θ ∈ C is the center and λ ∈ C 
encodes scale and orientation. 

A key result was the derivation of a containment inequality ensuring that each vertex of 
the inner polygon lies on the correct side of every edge of the outer polygon. 

 This led to the real inequality: 
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௞ା
భ
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ቇ  ≤  cos ቀ
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ቁ                               (1) 

where a,b are the real and imaginary parts of λ, and c,d are the real and imaginary parts 
of θ.  

This inequality formed the basis for optimizing the scale and placement of the inner 
polygon. Special cases such as coincident centers, pure scaling, and symmetric configura 
tions (a+c = 1) were explored. The expression |2ℓn−2km−m| was introduced as a key 
metric for identifying critical contact configurations. 
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௠
−

௞ା
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௡
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భ

మ

௡
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௞ା
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௡
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గ

௡
ቁ                                  (2)                                             

Equation (2) defines the precise configuration in which a vertex of the inner regular m-
gon touches an edge of the outer regular n-gon. The parameters a and b represent the 
real and  imaginary components of the inner polygon’s scaling and rotation, while c and 
d denote its center coordinates. The left-hand side of the equation computes the 
projected position of the vertex relative to the edge midpoint, and the right-hand side 
cos π n corresponds to the angular threshold defined by the outer polygon’s edge. When 
equality holds, the vertex lies exactly on the boundary, indicating a contact point. This 
condition is critical for identifying maximal configurations and bounding the scale factor 
under geometric constraints. 

In the present work, we extend this framework by introducing double-contact 
constraints and analyzing the special case where the rotational and vertical translation 
components vanish, i.e., b= 0 and d = 0. Under this condition, the trigonometric 
inequality simplifies, allowing us to derive a new identity for the scaling factor based on 
symmetric edge-vertex alignment. 

 

3. Main Result : ScalingIdentity under  
Double-Contact Constraints 

Let n, m ≥ 3. The outer n-gon has unit circumradius; the inner m-gon has scale c > 0. For 
a touching between the ℓ-th vertex of the m-gon and the edge between the k-th and 
(k +1)-th vertices of the n-gon, the scale-at-contact 

𝑎(𝑘, 𝑙) =  
ୡ୭ୱቀ

ഏ

೙
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          (3) 

Let us analyze the case where n=6 and m=8. 

 

 

 



Double-Contact Scaling Identity for Regular Polygons 
C.Karacam, Ahmet Ç.Girit.  Türkiye Mathematical Sciences, 2025 

4 

 

 

 

 

 

 

In a double-contact we have two distinct half-integers kଵ +   
ଵ

ଶ
    and    kଶ +   

ଵ

ଶ
    in (0, 

௡

ଶ
 ] and 

indices    ℓଵ, ℓଶ∈ {0, 1, . . . , m - 1}  such that 

                                     a(kଵ, ℓଵ) = a(kଶ, ℓଶ)                                                                  (4) 
                                                                           
Write kଵ, kଶ  for the half-indices (i.e. the formula already includes +12) and set, for later 

compactness, 

               α± ∶=    
గ(௞భ±௞మ)

௡
                 ,                 𝛽± ∶=

గ(௟భ±௟మ)

௠
 

 

From (3)–(4): 
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Edge DC →   𝑘ଵ =  
ଷ

ଶ
 

Edge FG →   𝑘ଵ = − 
ଷ

ଶ
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Move all terms to opposite sides and group the cos(π/n) and c parts: 
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Use 

cos(𝑢) − cos(𝑣) = −2 sin ቀ
௨ା௩

ଶ
ቁ sin ቀ

௨ି௩

ଶ
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ଵ
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For the left-hand side(LHS)of (6): 
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With 
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Compute the half-sums: 
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Thus 
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For the right-hand side (RHS)of (6),expand each product: 
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Subtract the  second from the first and group terms: 
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𝑅𝐻𝑆

𝑐
=

1
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Each difference cos 𝐴 − cos 𝐵 =  −2 sin ቀ
஺ା஻

ଶ
ቁ sin ቀ

஺ି஻

ଶ
ቁ . 

For the first bracketi in   (9): 
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𝑚
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𝑛
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Hence 

                                                                  

cos 𝐴ଵ − cos 𝐵ଵ = −2 sin 𝛽ା sin൫−(𝛽 − 2𝛼ି)൯ = 2 sin 𝛽ା sin(𝛽 − 2𝛼ି). 

Fort he second bracket ,n (9); 

𝐴ଶ = 2𝜋 ቀ
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−
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ଶ
= π     ,

     ୪భା୪మ
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ଶ
= π   ,         

   ୪మା୪భ

୫
= −βି. 

Thus 

cos 𝐴ଶ − cos 𝐵ଶ = −2 sin 𝛽ା sin(−𝛽 ) =  2 sin 𝛽ା sin 𝛽 . 

Substitue both differences into (9): 

ோுௌ

௖
=

ଵ

ଶ
(2 sin 𝛽ା sin(𝛽 − 2𝛼ି)) + 

ଵ

ଶ
(2 sin 𝛽 sin 𝛽ା)                                                           (10) 

But by symmetry, exchanging (𝑘ଵ, 𝑙ଵ) and (𝑘ଶ, 𝑙ଶ) yields the complementary term sin(𝛽ା− 
2𝛼ା) sin𝛽  as well. Combining both (or repeating the expansion for the other pair) gives 

 the fully symmetric RHS: 

𝑅𝐻𝑆 = 𝑐(sin 𝛽ା sin(𝛽 − 2𝛼ି) + sin 𝛽 sin(𝛽ା − 2𝛼ା))                                                        (11) 

Equating (8) and (11) (note the minus sign in LHS): 

−2cos ቀ
గ

௡
ቁ sin(𝛽ା − 𝛼ା) sin(𝛽 − 𝛼ି) = 𝑐(sin 𝛽ା sin(𝛽 − 2𝛼ି) + sin 𝛽 sin(𝛽ା − 2𝛼ା))      

(12) 

Multiply by −1 

2cos ቀ
గ

௡
ቁ sin(𝛽ା − 𝛼ା) sin(𝛽 − 𝛼ି) = 𝑐(sin 𝛽ା sin(𝛽 − 2𝛼ି) + sin 𝛽 sin(𝛽ା − 2𝛼ା))       

(13) 

We now divide both sides of (13) by sin(𝛽ା − 𝛼ା) sin(𝛽 − 𝛼ି) and use the elementary 
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cos 𝑥 − cot 𝑦 sin 𝑥 =
ୱ୧୬(௫ା௬)

ୱ୧୬ ௬
  (sin 𝑦  ≠ 0). 

Observe that 

ୱ୧୬൫ఉ±ିଶఈ±൯

ୱ୧୬ ±
=  cos(2𝛼±) − cot(𝛽±) sin(2𝛼±) ,  

ୱ୧୬൫ఉ±ିఈ±൯

ୱ୧୬ ఉ±
=  cos(𝛼±) − cot(𝛽±) sin(𝛼±) 

Hence (13) becomes, after dividing through: 

ଶ ୡ୭ୱቀ
ഏ

೙
ቁ

௖
=  

౩౟౤(ഁశషమഀశ)

౩౟౤ ഁశ
ା
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౩౟౤ ഁష
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౩౟౤ ഁశ
.
౩౟౤(ഁషషഀష)

౩౟౤ ഁష

                                                                                  (14)                                                                            

                =
(ୡ୭ୱ(ଶఈశ)ିୡ୭୲(ఉశ) ୱ୧୬(ଶఈశ))ା(ୡ୭ୱ(ଶఈష)ିୡ୭୲(ఉష) ୱ୧୬(ଶఈష))

(ୡ୭ୱ(ఈశ)ିୡ୭୲(ఉశ) ୱ୧୬(ఈశ)).(ୡ୭ୱ(ଶఈష)ିୡ୭ (ఉష) ୱ୧୬(ఈష))
                                                   (15) 

Let  

𝛼± =  
గ(௞భ±௞మ)

௡
, 𝛽± =  

గ(௟భ±௟మ)

௡
 

Moreover, the expression can be rewritten equivalently as 

2 cos ቀ
𝜋
𝑛

ቁ

𝑐
=

(cos(2𝛼ା) − cot(𝛽ା) sin(2𝛼ା)) + (cos(2𝛼ି) − cot(𝛽ି) sin(2𝛼ି))

(cos(𝛼ା) − cot(𝛽ା) sin(𝛼ା)). (cos(2𝛼ି) − cot(𝛽 ) sin(𝛼ି))
 

 

Optional long factorization. Let A= cos𝛼ା,  B=cos𝛼ି ,  C=cot𝛽ା,  D=cot𝛽 . 

 Using   sinα±= 1−cos2α±       (signs chosen by geometry), write the  denominator in (15) 
as : 

ቚ𝐴 − 𝐶ඥ1 − 𝐴ଶቚ . ቚ𝐵 − 𝐷ඥ1 − 𝐵ଶቚ, 

and the numerator as: 

ቚ2𝐴ଶ − 1 − 2𝐶𝐴ඥ1 − 𝐴ଶቚ + ቚ2𝐵ଶ − 1 − 2𝐷𝐵ඥ1 − 𝐵ଶቚ 

This yields an explicit rational-trigonometric factor 

cos ቀ
𝜋
𝑛

ቁ

𝑐
= 𝐴𝐵൫1 − 𝐹(𝐴, 𝐵; 𝐶, 𝐷)൯ 

With a (lengthy) closed form F obtained by expanding (15). 

By symmetry the two distinct half-indices lie in complementary windows: 

𝑘ଵ +
1

2
∈ ቌ0,

ቂ
𝑛
2

ቃ

2
቏ , 𝑘ଶ +

1

2
∈ ቌ

ቂ
𝑛
2

ቃ

2
,
𝑛

2
቏ 

 



Double-Contact Scaling Identity for Regular Polygons 
C.Karacam, Ahmet Ç.Girit.  Türkiye Mathematical Sciences, 2025 

8 

(with their negatives also admissible by central symmetry). The touching vertices are 
𝑙ଵ, 𝑙ଶ ∈ {0, … , 𝑚 − 1}. 

 

4. Examples 

Take       n = 6 ,  m = 4 ,     (𝑘ଵ, 𝑘ଶ) = ቀ
ଵ

ଶ
,

ଷ

ଶ
ቁ and (𝑙ଵ, 𝑙ଶ) = (0,1). Then 

𝛼ା =
𝜋

2
, 𝛼ି =

𝜋

6
, 𝛽ା =

𝜋

4
, 𝛽 = −

𝜋

4
 

Compute the long-form pieces: 

sin(𝛽ା − 2𝛼ା)

sin 𝛽ା
=

sin ቀ
𝜋
4

− 𝜋ቁ

sin ቀ
𝜋
4

ቁ
=  −1, 

sin(𝛽 − 2𝛼ି)

sin 𝛽
=

sin ቀ−
𝜋
4

+
𝜋
3

ቁ

sin ቀ−
𝜋
4

ቁ
=  −

√3 − 1

2
, 

sin(𝛽ା − 𝛼ା)

sin 𝛽ା
=

sin ቀ
𝜋
4

−
𝜋
2

ቁ

sin ቀ
𝜋
4

ቁ
=  −1, 

sin(𝛽 − 𝛼ି)

sin 𝛽
=

sin ቀ−
𝜋
4

−
𝜋
6

ቁ

sin ቀ−
𝜋
4

ቁ
=  

√3 − 1

2
, 

 

Therefore the RHS of (16) equals 

(−1) + ቆ−
√3 − 1

2
ቇ

(−1). ቆ
√3 − 1

2
ቇ

= 2 +  √3 

Since  2 cos ቀ
గ

଺
ቁ =  √3,the master identity yields 

ଶ ୡ୭ୱቀ
ഏ

ల
ቁ

௖
= 2 +  √3  ⇒ √

ଷ

௖
= 2 +  √3 ⇒ 𝑐 =

√ଷ

ଶା√ଷ
=

√ଷ൫ଶି√ଷ൯

൫ଶା√ଷ൯൫ଶି√ଷ൯
= 2√3 − 3 ≈ 0.4641016151 

 

Complexity note. A naive sweepover (𝑘ଵ, 𝑘ଶ, 𝑙ଵ, 𝑙ଶ) is O(nଶmଶ) ;windowing and  parity 
constraints reduce the search in practice. 
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5. Conclusion  

This study presents a complete derivation of a trigonometric identity governing the op 
timal scaling of a regular m-gon inscribed within a regular n-gon under double-contact 
constraints. By focusing on the symmetric case where rotational and vertical translation 
components vanish (b = 0, d = 0), we obtain a closed-form expression for the scaling 
factor c through the alignment of two distinct edge-vertex interactions. The resulting 
identity reveals how geometric symmetry simplifies the containment condition and 
enables algebraic factorization. The long-form derivation demonstrates the power of 
complex-plane parametrization in handling nested polygon configurations, offering both 
analytical clarity and computational efficiency. Beyond its theoretical value, the identity 
provides a foundation for symbolic encoding, architectural modeling, and algorithmic 
design. Future work may extend this framework to asymmetric contacts, higher-
dimensional analogs, or dynamic polygonal systems with variable curvature and 
deformation. 
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