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Abstract

This study presents a detailed derivation of a trigonometric identity governing the
optimal scaling of a regular m-gon inscribed within a regular n-gon underdouble-contact
constraints. Building on prior work that established containment inequalities for nested
polygons in the complex plane, we focus on the symmetric configuration where
rotational and vertical translation components vanish (b = 0, d = 0). In this setting, we
derive a closed-form expression for the scaling factor c by equating two distinct contact
conditions involving edge-vertex interactions. The resulting identity incorporates cosine
and cotangent terms and reveals how geometric symmetry leads to algebraic
simplification. We also provide a long-form factorization and numerical examples to
illustrate the identity’s behavior across different polygon pairs. This work contributes to
the broader theory of polygonal optimization and symbolic encoding in geometric
configurations.
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1. INTRODUCTION

Geometry has long served as a bridge between scientific reasoning and artistic
expression. From ancient civilizations such as Egypt and Mesopotamia to classical
Greece, geometric principles were used to encode cosmic order and architectural
harmony. Thinkers like Pythagoras and Euclid formalized foundational ideas through
symmetry, proportion, and regular polygons. In the Islamic world, particularly during
the Seljuk and Ottoman periods, geometry evolved into both a scientific tool and a
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spiritual medium. Intricate polygonal patterns in mosques and madrasas symbolized
infinite repetition and divine unity [1, 8, 11].

In modern science and engineering, geometric modeling plays a central role in fields
such as computer-aided design, materials science, and architectural optimization.
Regular polygons, due to their inherent symmetry, are ideal candidates for nesting and
packing problems. Numerous studies have explored how to inscribe one polygon within
another to maximize area or minimize perimeter under geometric constraints [4, 5, 7,
12]. These problems have practical applications in solar energy systems [2, 3], cutting
and packing algorithms [9, 10], and symbolic design

While traditional approaches rely heavily on coordinate geometry and trigonometric
identities, such methods can become cumbersome when addressing rotational symmetry and
complex transformations. Representing polygon vertices in the complex plane offers a more
elegant and unified framework. Complex numbers allow scaling, rotation, and translation to
be expressed algebraically, simplifying constraint formulation and enhancing analytical
tractability.

Recent advances have introduced algorithmic and analytical techniques for inscribed polygon
optimization. Notable contributions include dynamic programming for convex k-gons [14],
maximum-area configurations in closed regions [16], and heuristic solutions for geometric
enclosure problems [17]. Studies on rectangular and triangular optimization further highlight
the computational depth of these problems [6, 12].

Building on this foundation, our previous work [13] introduced a complex-numberbased
inequality for determining whether a regular m-gon is fully contained within a regular n-gon.
In the present study, we extend that framework by analyzing double-contact configurations—
cases where two distinct vertices of the inner polygon simultaneously touch two edges of the
outer polygon. This leads to a new trigonometric identity for the scaling factor, derived under
symmetry and alignment constraints.

2. Background and Prior Framework

This study builds upon the geometric and algebraic framework introduced in our earlier
publication, Optimal Positioning of Regular Polygons under Area Constraints [13]. In
that work, we investigated how a regular m-gon can be optimally inscribed within a
regular n-gon to maximize its area, under strict containment conditions.

The polygons were modeled in the complex plane: the outer n-gon was centered at the
origin with unit circumradius, and the inner m-gon was allowed to scale, rotate, and
translate. Each vertex of the outer polygon was represented as z;, = e?™X/1 while the
inner polygon was expressed as w, = 0 + Ae?™¢/™ where 0 € C is the center and A € C
encodes scale and orientation.

A key result was the derivation of a containment inequality ensuring that each vertex of
the inner polygon lies on the correct side of every edge of the outer polygon.

This led to the real inequality:
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k+s k+s K+t e
a.cos <2n <L - L)) + b.sin <2n <L - L)) + c.cos <2nl> + d.sin <2nl> < cos (E) (1)
m n m n n n n

where a,b are the real and imaginary parts of A, and c,d are the real and imaginary parts
of 6.

This inequality formed the basis for optimizing the scale and placement of the inner
polygon. Special cases such as coincident centers, pure scaling, and symmetric configura
tions (a+c = 1) were explored. The expression |2#n-2km-m| was introduced as a key
metric for identifying critical contact configurations.

k+2 k+2 k+2 k+2
a.cos (21‘[ <i - L)) + b.sin (21‘[ <i - L)) + c.cos <2nl> +d.sin <27TL> = cos (E) (2)
m n m n n n n

Equation (2) defines the precise configuration in which a vertex of the inner regular m-
gon touches an edge of the outer regular n-gon. The parameters a and b represent the
real and imaginary components of the inner polygon’s scaling and rotation, while c and
d denote its center coordinates. The left-hand side of the equation computes the
projected position of the vertex relative to the edge midpoint, and the right-hand side
cos Tt n corresponds to the angular threshold defined by the outer polygon’s edge. When
equality holds, the vertex lies exactly on the boundary, indicating a contact point. This
condition is critical for identifying maximal configurations and bounding the scale factor
under geometric constraints.

In the present work, we extend this framework by introducing double-contact
constraints and analyzing the special case where the rotational and vertical translation
components vanish, i.e., b= 0 and d = 0. Under this condition, the trigonometric
inequality simplifies, allowing us to derive a new identity for the scaling factor based on
symmetric edge-vertex alignment.

3. Main Result : Scalingldentity under
Double-Contact Constraints

Let n, m = 3. The outer n-gon has unit circumradius; the inner m-gon has scale c > 0. For
a touching between the #-th vertex of the m-gon and the edge between the k-th and
(k +1)-th vertices of the n-gon, the scale-at-contact

1
k+2
cos(E)—c.cos<2n—2>
n. n

a(k,1) = (3)

Let us analyze the case where n=6 and m=8.



Double-Contact Scaling Identity for Regular Polygons
C.Karacam, Ahmet C.Girit. Tiirkiye Mathematical Sciences, 2025

3
EdgeDC—- k; = =
2
D K G
08 \
J
06
04
02| poly1 \\
poly2 Pl B
-02 o 02 o4 os/ 1
-0.2
-06 v

Edge FG—- k; = —

N W

In a double-contact we have two distinct half-integers k; + % and k, + % in (0, %] and
indices ¥4, ¢,€{0,1,..., m-1} such that

a(ky, 1) = alky, £2) (4)
Write k4, k, for the half-indices (i.e. the formula already includes +12) and set, for later
compactness,

. m(kytk;) . m(lEl,)
oy = —— , ﬁ+ =

n - m

From (3)—(4):

cos (%) — ccos (Zn %) 3 cos (%) — ccos (Zn %) o

cos(an(B-5))  cos(an(2 1))

(s (£) e cos (a8 eos 2 (2-12) = (s (D) eems(areos(ox(2-2)
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Move all terms to opposite sides and group the cos(m/n) and c parts:

s () o2 5)) e (a2 -5)) -
= ¢ (cos (22)cos (2 (2 = ) — ccos (2 2) cos (2 (2 - 2)) ©

Use

cos(u) —cos(v) = =2 sm( ) sin (u_v) cos(u) cos(v) = %(cos(u + v) + cos(u — v))

For the left-hand side(LHS)of (6):
LHS = cos (E) (—2 sin (U il V) sin (U _ V)) (7)
B n 2 2

With

pim (58, v:m (529

Compute the half-sums:

+ Oy

U+V L+l ki+k,
2 =”< - >=

u-v <l1—l2 kl—k2>_
2 - m n =p-—a

m n

Thus

LHS = —2cos (%) sin(By — ay) sin(B- — a_)
(8)
For the right-hand side (RHS)of (6),expand each product:

cos (27;k1) cos <Z7T (% — %)) ;( cos <27‘[ (frzl k2> + 27 kl > + cos (27‘[ (frzl %) - 27‘[% >>

cos (27:(2) cos <Z7T <% - %)) = ; (cos (27‘[ (frll kl) + 27‘[k2 ) + cos <27‘[ <£r11 I;l) - 27‘[% >>

Subtract the second from the first and group terms:
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+% (cos (271'[;2 —2r %) — cos (271%1 - Zn%)) (9)

Each difference cosA — cos B = —2sin (#) sin (%) .

For the first bracketi in (9):

I, k,—k L ki—k
A1=2n(—2— 2 1),31=2n(—1— 1 2)

m n m n
Al +B1 ll _l2 Al_Bl lZ _ll z(kZ _kl)
= = = —_ = - - 2 -
Hence
cos A; — cos By = —2sin B sin(—(B- — 2a_)) = 2sin B, sin(B_ — 2a_).
Fort he second bracket ,n (9);
_ I, kp+kq _ ly  kitk;
Ay = 2 (= %), B, =2m (L -7
A,+B 1,+1 A,-B 1+
222:_‘_[ , ;12:6-'- , 222:1_[, ;1:_8_.
Thus
cos A, —cos B, = —2sin B, sin(—f_) = 2sinf, sinf_.
Substitue both differences into (9):
# = %(2 sin B, sin(B_ — 2a_)) + %(2 sin f_sin ;) (10)

But by symmetry, exchanging (k4, [;) and (k,, [,) yields the complementary term sin(f, -
2a,) sinf_ as well. Combining both (or repeating the expansion for the other pair) gives

the fully symmetric RHS:

RHS = c(sin B, sin(B_ — 2a_) + sin f_sin(f; — 2a,)) (11)
Equating (8) and (11) (note the minus sign in LHS):

—2cos (%) sin(By — ay) sin(B- — a_) = c(sin B, sin(B- — 2a_) + sin B_sin(B, — 2a,))
(12)

Multiply by -1

2cos () sin(By — @) sin(B- — a_) = c(sin f, sin(B- — 2a.) + sin f_sin(B, — 2a,))
(13)

We now divide both sides of (13) by sin(f; — a,) sin(f_ — @_) and use the elementary
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cosx —cotysinx = # (siny = 0).
Observe that

sin(fs—2ay) _ cos(2ay) — cot(By) sin(2ay), sinlfs—ay) _ cos(ay) — cot(B4) sin(ay)

sin 4 - - - sin B+

Hence (13) becomes, after dividing through:

T sin(f+—2a4) | sm(ﬁ —2a-)
2 COS(_) sin B4+ sin B—
c —  sin(B+-a4)sin(B——a-) (14)
sinB4y+ ° sinf_

__(cos(2ay)—cot(fy) sin(2ay))+(cos(2a_)—cot(B_) sin(2a_)) (15)
o (cos(a4)—cot(B4) sin(a4)).(cos(2a_)—co (B-) sin(a-))

Let

m(kitk;) ﬂ _ wllyEl)
P+ —

a =
* n - n
Moreover, the expression can be rewritten equivalently as

2 cos (%) _ (cos(2a,) — cot(B,) sin(a,)) + (cos(2a_) — cot(B_) sin(2a_))

c (cos(a,) — cot(B,) sin(a)). (cos(2a_) — cot(B_) sin(a_))

Optional long factorization. Let A= cosa,, B=cosa_, C=cotf,, D=cotf_.

Using sina+=1-cos2a+  (signs chosen by geometry), write the denominator in (15)
as:

|A NE —A2| . |B — D1 - BZ|,
and the numerator as:
|2A2 —1-2¢4y1 —A2| + |232 —1-2DBy1- BZ|

This yields an explicit rational-trigonometric factor

= AB(1—-F(A,B;C,D))

With a (lengthy) closed form F obtained by expanding (15).

By symmetry the two distinct half-indices lie in complementary windows:

[z] ﬂ

k1+eo

. k2+ €

2
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(with their negatives also admissible by central symmetry). The touching vertices are
ll' lz E {O, ...,m - 1}.

4. Examples

Take n=6,m=4, (k,k,) = G,%) and (l4,1,) = (0,1). Then

/[ I /[ /[
ay =0 = =7, =-7
Compute the long-form pieces:
. (T
sin(By — 2a,) S0 (Z B ”) _

e

sin(B- —2a_) _sin (_% + %) _ V3-1

sin B_ sin (_ %) B 2’

. (T T
sin(fy —ay) S (Z B 7)
W ()

= —1,

sin(B_ —a_) sin (—%—%) B V3-1
sinf. (_ %) 2

Therefore the RHS of (16) equals

=2+ V3
' 2
Since 2 cos (%) = +/3,the master identity yields
2cos(g) _ V3 _ _ 3 _ 3 N
=2+V3=>==2+V3=¢ =i = TR = 2V3 — 3~ 0.4641016151

Complexity note. A naive sweepover (ky, ky,1;,1;) is 0(n?m?) ;windowing and parity
constraints reduce the search in practice.
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5. Conclusion

This study presents a complete derivation of a trigonometric identity governing the op
timal scaling of a regular m-gon inscribed within a regular n-gon under double-contact
constraints. By focusing on the symmetric case where rotational and vertical translation
components vanish (b = 0, d = 0), we obtain a closed-form expression for the scaling
factor ¢ through the alignment of two distinct edge-vertex interactions. The resulting
identity reveals how geometric symmetry simplifies the containment condition and
enables algebraic factorization. The long-form derivation demonstrates the power of
complex-plane parametrization in handling nested polygon configurations, offering both
analytical clarity and computational efficiency. Beyond its theoretical value, the identity
provides a foundation for symbolic encoding, architectural modeling, and algorithmic
design. Future work may extend this framework to asymmetric contacts, higher-
dimensional analogs, or dynamic polygonal systems with variable curvature and
deformation.
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