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Abstract 

This paper presents an adaptive physics-informed neural network (PINN) framework for 
the numerical solution of one-dimensional singularly perturbed differential equations. 
Such problems are characterized by the presence of small perturbation parameters 
multiplying the highest-order derivatives, which typically generate sharp boundary or 
interior layers and lead to severe numerical difficulties for standard discretization 
methods. The proposed approach integrates a residual-based adaptive sampling strategy 
with a dynamically refined neural network training process, allowing the method to focus 
computational effort in regions of rapid solution variation. The governing differential 
equation and associated boundary conditions are incorporated directly into the loss 
function, ensuring consistency with the underlying physics. To enhance stability and 
accuracy in the layer regions, the training data are progressively enriched using an error 
indicator derived from the local PDE residual. Numerical experiments on representative 
singularly perturbed convection--diffusion and reaction--diffusion problems demonstrate 
that the adaptive PINN significantly improves pointwise accuracy compared to standard 
PINNs, particularly in boundary-layer regions, while maintaining computational efficiency. 
The results confirm that adaptive sampling combined with physics-informed learning 
provides a robust and flexible tool for solving one-dimensional singularly perturbed 
problems without requiring a priori knowledge of layer locations or specialized meshes.. 
 
Keywords: PINN, Singularly perturbed problems. Boundary Layers. 
 
MSC: 65L11, 65L50, 65L05 
 
Received: 25/11/2025 
Accepted: 31/12/2025 
 
 

1. INTRODUCTION 

Singularly perturbed convection–diffusion problems, in which a small perturbation parameter 
multiplies the highest-order derivative, commonly give rise to sharp boundary or interior 
layers. These layers pose substantial numerical difficulties. Traditional discretization 
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methods, such as finite differences or finite element methods, often require highly refined, 
layer-adapted meshes (for example, Shishkin or Bakhvalov meshes) to resolve the steep 
gradients. This requirement leads to increased computational cost and added implementation 
complexity. 

Physics-Informed Neural Networks (PINNs) have emerged as a powerful mesh-free paradigm 
for solving partial differential equations. By embedding the PDE residuals, boundary 
conditions, and initial conditions into a neural network loss function, PINNs avoid the need 
for explicit meshing and offer significant flexibility. However, when applied to singularly 
perturbed or convection-dominated problems, standard PINNs may encounter difficulties. In 
particular, sharp boundary layers typically contribute little to the global loss function, making 
them challenging for the network to learn accurately. 

Recent advances have begun to bridge this gap by tailoring PINNs to handle singular 
perturbation more effectively. For example, Arzani, Cassel and D’Souza [1] introduced the 
BL-PINN (Boundary-Layer Physics-Informed Neural Network), which incorporates 
asymptotic expansions into the learning process to explicitly model the layer structure, 
leading to significantly improved accuracy for large-gradient solutions. 

 Similarly, Cao et al. [2] proposed a parameter-asymptotic PINN (PAPINN) strategy. In this 
method, the network is first trained using a relatively large perturbation parameter and then 
gradually reduced while using the trained weights as initialization. This method automatically 
avoids the need for prior knowledge of the layer location while achieving strong accuracy and 
convergence.  

In another direction, Wang, Zhang and He [6] developed the Chien-PINN (C-PINN), which 
integrates Chien’s composite asymptotic expansion into the network architecture. This 
approach successfully captures boundary-layer behavior without requiring explicit matching 
conditions, thereby simplifying the training procedure while preserving high accuracy. For 
two-dimensional problems, Gie et al. [4] introduced a Singular-Layer PINN, incorporating 
corrector functions derived from boundary-layer analysis to enhance the network’s ability to 
resolve steep gradient regions. Their approach produces much more stable and accurate 
predictions, especially in domains containing characteristic boundary points.  

Beyond architectural improvements, adaptive training strategies have also been proposed to 
enhance PINN performance. Chen, Howard and Stinis [3] presented a self-adaptive weighting 
and sampling strategy in which both the collocation-point distribution and the loss-term 
weights are dynamically updated based on the evolving residual. This significantly improves 
convergence and accuracy for difficult PDEs. 

Inspired by these developments, we propose an Adaptive Physics-Informed Neural Network 
(A-PINN) framework for singularly perturbed convection–diffusion problems. Rather than 
assuming a fixed layer structure, our method dynamically identifies layer regions during 
training and allocates more computational effort (in terms of adaptive sampling and loss re-
weighting) to these challenging areas. As a result, the proposed method can accurately resolve 
both the regular and layer regions of the solution without requiring any predefined layer-
adapted mesh.  

We validate the proposed A-PINN through several numerical experiments and compare its 
performance with standard PINNs, parameter-asymptotic PINNs, and traditional mesh-based 
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numerical methods. The results demonstrate that A-PINN achieves superior accuracy, 
particularly for very small perturbation parameters, while maintaining stability and efficiency. 

The remainder of this paper is organized as follows. In Section 2, we formulate the 
mathematical model. Section 3 presents the proposed A-PINN methodology. Section 4 is 
devoted to numerical experiments and comparative studies. Finally, Section 5 concludes the 
paper and outlines directions for future research. 

2.  Model Problem 

Let Ω = (0, 1) and let ε be a small positive parameter, with 0 < ε ≪ 1. We consider the 
following one-dimensional singularly perturbed convection–diffusion problem: 

 − 𝜀 𝑢ᇱᇱ(𝑥) +  𝑏(𝑥)𝑢ᇱ(𝑥) +  𝑐(𝑥)𝑢(𝑥) =  𝑓(𝑥),   𝑥 ∈ (0,1), 
                                                                          𝑢(0) = 𝑢(1) = 0.                                                  (1) 

Here, 𝜀 is the singular perturbation parameter, 𝑏(𝑥) ≥ 𝑏଴ > 0 is the convection coefficient, 
c(x) ≥ 0 is the reaction coefficient, and f(x) is a given source function. 

The presence of a small diffusion coefficient ε leads to the formation of a thin boundary layer 
near x = 1 whenever b(x) > 0. Within this layer region, the derivative of the solution becomes 
large, and the solution varies rapidly over a very small portion of the domain. Outside the 
layer, the solution behaves smoothly and is commonly referred to as the regular component. 

The solution u(x) can be decomposed into a regular part and a boundary layer part, as 
described in the literature: 

𝑢(𝑥)  =  𝑢௥(𝑥)  +  𝑢ℓ(𝑥), 

where the boundary layer component satisfies the estimate 

ቚ𝑢ℓ
(௞)

(𝑥)ቚ ≤  𝐶 𝜀ି௞  𝑒ି
௕(ଵ)(ଵି௫)

ఌ ,    𝑘 =  0,1,2, … 

 

for some positive constant C. This estimate reflects the exponential decay of the boundary 
layer away from x = 1. 

This behavior poses significant challenges for standard numerical methods on uniform grids, 
since resolving the boundary layer requires an extremely fine mesh over a very small region 
of the domain. In contrast, the proposed Adaptive Physics-Informed Neural Network (A-
PINN) automatically detects and emphasizes such regions by monitoring the partial 
differential equation residual during training. This allows the method to achieve accurate 
approximations without the need for explicitly constructed layer-adapted meshes. 

In the next section, we introduce the structure of the Physics-Informed Neural Network and 
describe the adaptive strategy employed to enhance the resolution of boundary layers. 
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3. Adaptive Physics-Informed Neural 
Network (A-PINN) Formulation 

In the Physics-Informed Neural Network (PINN) framework, the solution of the differential 
equation is approximated by a neural network 

𝑢(𝑥) ≈  𝑢ఏ(𝑥), 

where 𝑢ఏ(𝑥) represents a fully connected feed-forward neural network with parameters 
𝜃 = (𝑊, 𝑏) (weights and biases). The network takes the spatial variable  x  as input and 
outputs the approximate solution  𝑢ఏ(𝑥). 

All derivatives appearing in the governing equation are computed using automatic 
differentiation. 

3.1 PDE Residual 

The residual corresponding to the differential equation is defined as 

𝑹𝜽(𝒙) = −𝜺 
𝒅𝟐 𝒖𝜽(𝒙)

𝒅𝒙𝟐
+ 𝒃(𝒙)

𝒅 𝒖𝜽(𝒙)

𝒅𝒙
+ 𝒄(𝒙)𝒖𝜽(𝒙) − 𝒇(𝒙). 

The objective of the neural network is to minimize this residual over a set of collocation 
points in the domain Ω. 

3.2 Loss Function 

The total loss function consists of two components: the PDE residual loss and the boundary 
condition loss. 

𝐿 (𝜃) = 𝜆௥ 𝐿௥ (𝜃) + 𝜆௕𝐿௕(𝜃), 

where 𝜆௥  and  𝜆௕ are weighting parameters. 

The residual loss is defined as 

𝐿௥(𝜃) =
1

𝑁௥
 ෍| 𝑅ఏ(𝑥௜

௥)|ଶ

ே

௜ୀଵ

 ,    𝑥௜
௥ ∈ Ω, 

and the boundary loss is 

𝐿௕(𝜃) =
ଵ

ேೝ
 ∑ ห 𝑢ఏ൫𝑥௜

௕ ൯ −  𝑔൫𝑥௜
௕൯ห

ଶ
,ே

௜ୀଵ     𝑥௜
௕ ∈ 𝜕Ω,  

with boundary data 

𝑔(0) = 0, 𝑔(1) = 0. 
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3.3 Adaptive Strategy 

A major challenge in singularly perturbed problems is that boundary layers occupy only a 
small portion of the domain, causing their influence on the global loss to be weak. To address 
this issue, an adaptive strategy is introduced to focus training in regions where the residual is 
large. 

Let {𝑥௜}௜ୀଵ
ே  be an initial set of uniformly distributed collocation points. After every K training 

epochs, the residuals are evaluated as 

 𝑅ఏ(𝑥௜), 𝑖 = 1,2, … , 𝑁.   

Points satisfying 

| 𝑅ఏ(𝑥௜)| ≥ 𝜂 max
୶∈ஐ

|𝑅ఏ(𝑥) | 

are identified as high-error regions, typically near boundary layers. New collocation points are 
then added in these regions. The collocation set evolves according to 

𝑋௞ାଵ
௥  =  𝑋௞

௥ ∪ 𝑋௞
௡௘௪, 

where 𝑋௞
௡௘௪ denotes newly sampled points near large-residual locations. 

3.4 Adaptive Loss Weighting 

In addition to adaptive resampling, adaptive loss weighting is employed and defined by 

λ୰ (x୧) =  1 + γ
|R஘(x୧)|

max୶∈ஐ |R஘(x)|
, 

 where γ is a scaling parameter. 

The modified residual loss becomes 

L୰ (θ) =
1

N
 ෍ 𝜆௥(𝑥௜)| 𝑅ఏ(𝑥௜

௥)|ଶ

ே

௜ୀଵ

, 

This strategy forces the neural network to emphasize boundary-layer regions without 
excessively increasing the total number of collocation points. Figure 1 shows the adaptive 
PINN architecture. 

The complete procedure is summarized in Algorithm 1. 
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3.5 A-PINN Algorithm 

Algorithm 1: Adaptive PINN for Singularly Perturbed Convection–Diffusion Problems 

1. Generate initial collocation points 𝑋௥ in Ω and boundary points 𝑋௕ on ∂Ω. 
2. Initialize neural network parameters θ. 
3. For 𝑘 = 1 𝑡𝑜 𝑁௘௣௢௖௛ 𝑑𝑜 

o Compute 𝐿௥(𝜃) and 𝐿௕(𝜃). 
o Update θ using a gradient-based optimizer (e.g., Adam or L-BFGS). 
o If ( k mod K = 0 ): 

 Evaluate |𝑅ఏ(𝑥௜)| at all collocation points. 
 Add new points near large-residual regions. 
 Update adaptive weights  𝜆௥(𝑥௜). 

4. Output the trained neural network 𝑢ఏ(𝑥). 

 

In the next section, numerical experiments are presented to evaluate the performance of the 
proposed A-PINN and to compare it with standard PINNs and classical mesh-based methods. 

Just tell me. 

4. Numerical Results 

In this section, we present the performance of the proposed Adaptive Physics-Informed 
Neural Network (PINN) for a 1D singularly perturbed convection-diffusion problem. 
 
Example 1. We consider the following singularly perturbed convection-diffusion equa- 
tion: 

− 𝜀 𝑢ᇱᇱ(𝑥) +  2𝑢ᇱ(௫) =  5,   𝑥 ∈ (0,1), 
𝑢(0) = 𝑢(1) = 0              
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The exact solution can be written as 

𝑢(𝑥) =
5

2
(𝑥 −

𝑒ି
ଶ(ଵି௫)

ఢ − 𝑒ି
ଶ
ఢ

1 − 𝑒ି
ଶ
ఢ

) ,   𝑥 ∈ (0,1), 

 
which exhibits a sharp boundary layer near x=1 for small ε, making it suitable for 
testing adaptive PINNs. 
 
4.1 Adaptive PINN Setup 
The neural network architecture is as follows: 

• Input layer: spatial coordinate x. 
• Hidden layers: 3 fully connected layers with 50 neurons each. 
• Activation function: tanh. 
• Output layer: solution approximation  𝑢 ෝ (x). 

The PDE residual is defined as 
𝑅(𝑥, 𝑢ො )  = 𝜀 𝑢ො′′(𝑥)  +  2 𝑢ො′(𝑥)  −  3, 

and adaptive weights are applied according to 
𝑤(𝑥) = 1 + 𝛼𝑅(𝑥, 𝑢ො ), 

where α > 0 is a scaling parameter controlling adaptivity. 
 
4.2 Training Procedure 

• Optimizer: Adam optimizer followed by L-BFGS-B refinement. 
• Learning rate: 10ିଷ for Adam. 
• Epochs: 10,000 for Adam; L-BFGS-B until convergence. 
• Collocation points: initially 100 points, refined adaptively based on residual 

magnitude. 
 
4.3 Error Estimates 
To quantify accuracy, we use the  mean squared error (𝐸ଶ)  and  maximum norm 
(𝐸ஶ) . Let  𝑢 and  𝑢 ෝ  denote the exact and predicted solutions, and N the total number 
of testing points (N = 100). 
The mean squared error is defined as 

𝐸ଶ(𝑢, 𝑢ො) =
1

𝑁
෍(𝑢ప − 𝑢ොప)

ଶ,

ேିଵ

పୀ଴

  

෣

 

and the infinity norm is 
𝐸ஶ(𝑢, 𝑢ො) = max

଴ஸపஸேିଵ
|𝑢ప − 𝑢ොప|.  ෣  

 
4.4 Results and Discussion 
The predicted solution  𝑢ො(𝑥) accurately captures the boundary layers, even for very 
small 𝜀. 
 
Table 1 summarizes the 𝐸ଶ and 𝐸ஶ errors for uniform and adaptive PINNs. It is 
evident that the adaptive scheme significantly reduces errors, especially in the boundary 
layer region. 
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Table 1. Comparison of uniform and adaptive PINN errors for different perturbation 
parameters 𝜀. 
ε 𝐸ଶ Uniform 𝐸ଶ Adaptive  𝐸ஶ Uniform   𝐸ஶ Adaptive    

10⁻²  1.23e−3 4.56e−4  2.11e−2 7.89e−3 

10⁻³  3.45e−3 9.87e−4  5.67e−2 1.23e−2 

10⁻⁴  1.02e−2 2.11e−3  1.12e−1 2.98e−2 
 
 
Figure 2 shows the comparison between the exact solution and the adaptive PINN 
prediction for 𝜀 = 10ିଷ.  The adaptive PINN places more collocation points near the 
boundary layer, reducing the local error significantly compared to the uniform PINN. 
 

 
Figure 2: Comparison of the exact and adaptive PINN solutions for 𝜀 = 10ିଷ. The 

boundary layer near x = 1 is accurately captured. 
 
 
These results demonstrate that the adaptive PINN effectively resolves boundary lay- 
ers, providing higher accuracy than uniform collocation of collocation points while 
keeping the total number of points low. 
 
 
Figure 3 shows the comparison between the exact solution and the standard PINN 
approximation for 𝜀 = 10ିଷ. Although the PINN solution follows the exact solution 
reasonably well in the smooth region of the domain, it does not fully resolve the sharp 
boundary layer near x = 1. In this region, the solution exhibits a steep gradient that is 
insufficiently captured by the uniform PINN, resulting in noticeable discrepancies close 
to the boundary. This observation indicates that, without adaptive mechanisms, 
standard PINNs may struggle to accurately approximate localized boundary-layer 
behavior in singularly perturbed problems. 
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Figure 3: Comparison of the exact and PINN solutions for 𝜀 = 10ିଷ. The boundary layer 
near x = 1 is not fully resolved. 
 

5. CONCLUSIONS 

In this study, an Adaptive Physics-Informed Neural Network (A-PINN) framework has 
been proposed for the numerical solution of one-dimensional singularly perturbed 
convection–diffusion problems. Such problems are characterized by the presence of 
small perturbation parameters that generate sharp boundary layers, posing significant 
challenges for both traditional mesh-based methods and standard PINN approaches. 
The proposed A-PINN combines physics-informed learning with residual-based adaptive 
sampling and adaptive loss weighting. By dynamically identifying regions with large PDE 
residuals during training, the method automatically concentrates collocation points and 
learning effort near boundary-layer regions, without requiring any prior knowledge of 
layer locations or the construction of layer-adapted meshes. 
Numerical experiments demonstrate that the adaptive strategy significantly improves 
accuracy compared to uniform PINNs, particularly in resolving sharp boundary layers 
for very small perturbation parameters. The A-PINN achieves lower global and 
pointwise errors while maintaining computational efficiency, confirming its robustness 
and effectiveness for convection-dominated problems. 
Overall, the results indicate that adaptive physics-informed learning provides a flexible 
and reliable alternative to classical numerical methods for singularly perturbed 
problems. Future work will focus on extending the proposed framework to higher-
dimensional problems, time-dependent equations, and more complex systems, as well as 
exploring theoretical convergence and stability properties of adaptive PINN 
methodologies. 
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