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Abstract 

The lattice path problem involves finding a path between two specific points in space using 

only certain predefined vectors. The goal is to establish a relationship between the number of 

lattice paths to a point and the emergence of specific number sequences. This was achieved by 

analyzing lattice paths in a table within a cartesian coordinate system. The number of paths to 

a particular cell, starting from the first column of the table, was computed, and the results 

were analyzed through a computer program. This method revealed Fibonacci, Pell, Pell-

Lucas, and Tribonacci sequences. Upon examining tables in dimensions higher than two, it 

was observed that the numbers found corresponded to the products of these special number 

sequences. Recursive relations were derived for the vector sets used in this process, and 

through these relations, identities among the number sequences were established.  
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1. INTRODUCTION 

Since the inception of mathematics, humans have continuously explored relationships and 

patterns among numbers, seeking to identify practical applications for them. This effort has 

resulted in numerous equations, special number sequences  and various mathematical fields. 

Extensive research has been carried out to better understand and advance these areas. Among 

the most well-known number sequences that have emerged from this effort are the Fibonacci, 

Pell, and Lucas sequences. What distinguishes these sequences from many other number 

patterns is their inherent structure, which not only links their terms but also allows them to 

appear frequently in various real-world contexts. The widespread occurrence of these 

sequences in seemingly unrelated fields has motivated researchers to find potential 
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applications in numerous domains. Due to the absence of a specific, guaranteed field for their 

findings, much of the research on these sequences has permeated various branches of 

literature. This very characteristic highlights the significance of special number sequences as 

fundamental tools in mathematics, linking diverse topics and demonstrating their importance 

in explaining the harmony of mathematical structures. 

A lattice path is a path between two specific points, formed using only a predetermined set of 

vectors. Research on lattice paths has been conducted for many years, with particular focus 

intensifying in the 19th century and continuing into recent years. One notable study, presented 

in [5], calculates the number of distinct paths from the origin to a point (a,b)(a,b)(a,b) using 

the vectors {(1,0),(0,1),(1,1)},{(1,0), (0,1), (1,1)}{(1,0),(0,1),(1,1)}, minimizing the number 

of vectors used. 

In the literature, most studies on lattice paths focus on two-dimensional lattice paths 

constructed using restricted sets of vectors. Among these, [1] has been particularly influential 

in inspiring this work. In this study, the Fibonacci, Pell, and Pell-Lucas sequences were 

derived using the vector set {(1,0),(1,1),(1,−1)}{(1,0), (1,1), (1,-1)}{(1,0),(1,1),(1,−1)} in two 

dimensions. Further exploration in this work extended the study to higher-dimensional spaces, 

where it was found that the relationship between the Pell and Pell-Lucas numbers becomes 

even more pronounced. Significant connections and recursive relations between these 

sequences were discovered through the analysis of lattice paths in higher-dimensional spaces 

using various vector sets. 

This work originated during the exploration of lattice paths within a table. As we computed 

the number of distinct paths between selected points using specific vector sets, we discovered 

a connection between the resulting numbers. These findings led to the formulation of the 

following hypotheses. 

 
 

2. MATERIALS and METHODS 

In the overall structure of the paper, a path is traced from the first column of an m×n 
table to a specific cell within the table (the concept of columns changes when 
transitioning to higher-dimensional space). The total number of distinct paths leading to 
each cell is recorded inside that cell. It is assumed that there is exactly one path to each 
cell in the first column. In some parts of the paper, it was also assumed that all the cells 
in the first two columns have one path each.To briefly discuss the work that inspired this 
paper, [1] used the vectors {(1,0),(1,1),(1,-1)} 3n table to derive the Pell and Pell-Lucas 
sequences, and in a 4n  table, the Fibonacci numbers.  

The algorithm for this study follows a structured approach: first, a literature review is 
conducted and relevant publications are examined, culminating in the formulation of 

hypotheses. Next, Python software is developed to generate numbers, and it is checked 

whether these numbers correspond to a special number sequence. If the numbers align 

with a known sequence, recursive relations for the generated numbers are derived. 

These recursive relations are then used to identify identities associated with the special 

number sequences. Finally, the derived identities are proved using the relations of these 
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special number sequences. This methodology allows for systematic exploration and 

validation of connections between lattice paths and special number sequences. 

 

3. RESULTS 

In this paper, we present the vector sets utilized and the corresponding sequences generated 

through the lattice path problem. The following vector sets were employed to explore the 

relationships between lattice paths and well-known number sequences: 

1. Vector Set {(𝟏, 𝟎), (𝟏, 𝟏)} 
This set was used to generate sequences that follow the Fibonacci sequence. The 

Fibonacci numbers are obtained by tracing paths from the origin to various points on 

the lattice, moving either horizontally or diagonally. The recursive relation for the 

Fibonacci sequence is 𝐹𝑛 = 𝐹𝑛−1+𝐹𝑛−2  with initial conditions𝐹0 = 0 𝑎𝑛𝑑 𝐹1 = 1  

2. Vector Set {(1,0),(1,1),(1,−1)}  
This set was applied to derive the Pell sequence. The Pell numbers follow the 

recurrence relation  𝑃𝑛 = 2𝑃𝑛−1+𝑃𝑛−2 starting with 𝑃0 = 0 𝑎𝑛𝑑 𝑃1 = 1. It also led to 

the generation of the Pell-Lucas sequence, which is similar but differs in its initial 

conditions. 

3. Vector Set {(1,0),(0,1),(1,1)}  

This set generates the Tribonacci sequence, where each term is the sum of the 

previous three terms. The recursive relation is 𝑇𝑛 = 𝑇𝑛−1+𝑇𝑛−2 + 𝑇𝑛−3, with initial 

conditions  𝑇0 = 0,    𝑇1 = 𝑇2 =1 

 

 

           

In our study, we developed theories based on different vector groups. 

 

 

1 2 
 

5 12 29 70 169 

1 3 
 

7 17 41 99 239 

Pell numbers 

Half of Pell-Lucas numbers 

 vector set of 

{(1,0),(1,1),(1,-1)} 
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1 2 
 

5 12 29 70 169 

Table 1. Sequences of 3n grid 

 

𝐹2𝑛−1                                                                     

𝐹2𝑛                                                                                                    

 

 

Table 2. Sequences of 4n grid 

 

Let’s create applications of this problem using different vector sets. 

3.1    Some Vector Sets in 2 Dimensions   

 

3.1.1       S = {(1,0), (0,1), (1,1), (1,-1)}. 

Let  vector set be S = {(1,0), (0,1), (1,1), (1,-1)}. In this case, we will calculate the number of 

distinct paths on a 2D grid using these vectors. Each vector represents a possible step: 

      (1,0): A step to the right along the x-axis. 

(0,1): A step upwards along the y-axis. 

(1,1): A diagonal step in both the x and y directions. 

 (1,-1): A diagonal step moving right along the x-axis and down along the y-axis 

 

  We calculate   the number of distinct path   for  3 row  grid.( 3n grid) 

The following data was obtained using a computer program. The program created the table by 

utilizing the recursive relationships between the numbers. 

 

 

1 2 5 13 34 89 233 

1 3 8 21 55 144 377 

1 2 5 13 34 89 233 

Pell numbers 
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Table 3. Number  of 3n grid for S 

It was observed that there are number sequences 

Top row: 1, 7, 33, 143, …  𝐹3𝑠 − 1. 

Middle row: 1, 5, 21, 89 …  𝐹3𝑠−1 

Bottom row: 1, 2, 7, 28, …  
1

2
(𝐹3𝑠−1 + 1) 

Note 1. The up vector is not used in the first column. The reason is that it is assumed 

that there is already 1 way to go to those compartments. Below, the paths to points (2,3) 

and (3,1) are modeled in a 3n table. As seen in the table, there are seven paths to these 

points. 

Example 1. 

The paths to points (2,3) as  

 

The paths to points (3,1) as  
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Recursive relations, 

 

Top row:  𝑎3,𝑛 1, 7, 33, 143, 609 … 

 Middle row:   𝑎2,𝑛 1, 5, 21, 89, 377 … 

 Bottom row:   𝑎1,𝑛 1, 2, 7, 28, 117, 494 … 

Recursive for bottom row, 

𝑎1,𝑛 = 𝑎2,𝑛−1 + 𝑎1,𝑛−1 

 

In this expression,   𝑎1,𝑛−1  is replaced with the equivalent. 

𝑎1,𝑛 = 𝑎2,𝑛−1 + 𝑎2,𝑛−2 + 𝑎1,𝑛−2 = 𝑎2,𝑛−1 + 𝑎2,𝑛−2 + 𝑎2,𝑛−3 + 𝑎1,𝑛−3 = 

 

The equivalent equations can be written in a similar way. 

 

𝑎1,𝑛 = 𝑎1,1 + ∑ 𝑎2,𝑘

𝑛−1

𝑘=1

 

Note: 𝑎1,1 = 1. 

Recursive for top row, 

 

𝑎3,𝑛 = 𝑎2,𝑛 + 𝑎2,𝑛−1 + 𝑎3,𝑛−1 
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In this expression,   𝑎3,𝑛−1  is replaced with the equivalent. 

𝑎3,𝑛 = 𝑎2,𝑛 + 𝑎2,𝑛−1 + 𝑎2,𝑛−1 + 𝑎2,𝑛−2 + 𝑎3,𝑛−2 

𝑎3,𝑛 = 𝑎2,𝑛 + 𝑎2,𝑛−1 + 𝑎2,𝑛−1 + 𝑎2,𝑛−2 + 𝑎2,𝑛−2 + 𝑎2,𝑛−3 + 𝑎3,𝑛−3

= 𝑎2,𝑛 + 𝑎3,1 + 𝑎2,1 + 2 ∑ 𝑎2,𝑘

𝑛−1

𝑘=2

= 𝑎2,𝑛 + 2 ∑ 𝑎2,𝑘

𝑛−1

𝑘=1

 

Note: 𝑎3,1=𝑎2,1=1 

Recursive for to row, 

𝑎2,𝑛 = 𝑎1,𝑛 + 𝑎1,𝑛−1 + 𝑎3,𝑛−1 + 𝑎2,𝑛−1 

 

We  obtain  using the relation 

Based on the relations 𝑎3,𝑛 ve 𝑎1,𝑛  we found for we arrive at the following: 

 

𝑎2,𝑛 = 𝑎1,𝑛 + 𝑎1,𝑛−1 + 𝑎3,𝑛−1 + 𝑎2,𝑛−1

= 1 + [∑ 𝑎2,𝑘

𝑛−1

𝑘=1

] + 1 + [∑ 𝑎2,𝑘

𝑛−2

𝑘=1

] + 𝑎2,𝑛−1 + 2 [∑ 𝑎2,𝑘

𝑛−2

𝑘=1

] + 𝑎2,𝑛−1

= 2 + 3𝑎2,𝑛−1 + 4 ∑ 𝑎2,𝑘

𝑛−2

𝑘=1

 

 

Corollary 1. 

It was observed that the pattern  𝑎2,𝑛is the pattern 𝐹3𝑛−1. From this, for n≥3 

𝐹3𝑛−1 = 2 + 3𝐹3𝑛−4 + 4 ∑ 𝐹3𝑘−1

𝑛−2

𝑘=1

. 

Proof. 

The proof will be done by induction. The statement is true for n=3.  

Let the statement be true for p, 

𝐹3𝑝−1 = 2 + 3𝐹3𝑝−4 + 4 ∑ 𝐹3𝑘−1

𝑝−2

𝑘=1

 

 The statement will be shown to be true for p+1 as well. Let n be assigned as p+1. 
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𝐹3𝑝+2 = 2 + 3𝐹3𝑝−1 + 4 ∑ 𝐹3𝑘−1

𝑝−1

𝑘=1

= 2 + 3𝐹3𝑝−1 + 4 (∑ 𝐹3𝑘−1

𝑝−2

𝑘=1

) + 4𝐹3𝑝−4

= 2 + +3𝐹3𝑝−4 + 4 (∑ 𝐹3𝑘−1

𝑝−2

𝑘=1

) + 3𝐹3𝑝−1 + 𝐹3𝑝−4 = 4𝐹3𝑝−1 + 𝐹3𝑝−4 

Let 3p=s, 

𝐹𝑠+2 = 𝐹𝑠+1 + 𝐹𝑠 = 2𝐹𝑠 + 𝐹𝑠−1 = 3𝐹𝑠−1 + 2𝐹𝑠−2 = 3𝐹𝑠−1 + 𝐹𝑠−2 + 𝐹𝑠−3 + 𝐹𝑠−4

= 4𝐹𝑠−1 + 𝐹𝑠−4. 

 

Definition 1. 

𝐼𝑚(𝑛, 𝑉) represents the sum of the elements in the n-th column of a table constructed from the 

vector set V 

For example   𝑉 = {(1,0), (1,1), (1, −1)}    for   𝐼3(6, 𝑉)=70+99+70=239. 

1 2 5 12 29 70 

1 3 7 17 41 99 

1 2 5 12 29 70 

 

The numbers are determined by a recursive relation. 

Definiton 2.   𝐶(𝑠, 𝑘) represents the number of paths from the first column to the (s,k) cell. 

For example, in the table above, C(3,2)=7 

Teorem 1. 

∀nϵ N , n >1,   𝑉1 = {(1,0), (1,1), (1, −1), (0,1)} and  𝑉2 = {(1,0), (1,1), (1, −1)} 

𝐼𝑚(𝑛, 𝑉1) > ∑ 𝐼𝑚−𝑘(𝑛, 𝑉2)(𝑛 − 1)𝑘

𝑛−1

𝑘=0

. 

Proof. 

   Let's consider  𝐼𝑚−𝑘(𝑛, 𝑉2) 



Generated by the Lattice Path Problem with Various Vector Sets 

   
C.Karaçam, A.Vural.  Türkiye Mathematical Sciences, 2024, 1-4. 

9 

 

Table 4.    Path of  𝐼𝑚(𝑛, 𝑉)  

 

If we add k (0,1) vectors to any part of the path in this way, the path will not leave the m*n 

table. This is because the path is at least as far away from the top row (m-k row) as k (0,1) 

vectors. Each of these k vectors can be placed in n-1 different places (not in the first column). 

However, we do not count all the paths to the nth column with 𝑉2vectors. With this algorithm, 

the paths using k (0,1) vectors start from the lowest (1,k+1) cell vertically, that is, all the paths 

using k (0,1) vectors are not counted. For this reason, 

 

𝐼𝑚(𝑛, 𝑉1) > ∑ 𝐼𝑚−𝑘(𝑛, 𝑉2)(𝑛 − 1)𝑘

𝑛−1

𝑘=0

 

inequality is ensured. 

Let us support this theorem with an example. 

Example 2.   Let  us  m =n= 4 

𝐼4(4, 𝑉1) > ∑ 𝐼4−𝑘(4, 𝑉2)3𝑘

3

𝑘=0

 

Let's find 𝐼4(4, 𝑉1)    A table can be created by utilizing the recursive relation. 

1 10 63 341 

1 8 45 233 

1 5 22 103 

1 2 7 29 
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𝐼4(4, 𝑉1)=29+103+233+341=706 

The values of '𝐼4(4, 𝑉2), 𝐼3(4, 𝑉2), 𝐼2(4, 𝑉2), 𝐼1(4, 𝑉2)′ are also required to be found. 

1 2 5 13 

1 3 8 21 

1 3 8 21 

1 2 5 13 

 

𝐼4(4, 𝑉2)=13+21+21+13=68 

 

1 2 5 12 

1 3 7 17 

1 2 5 12 

 

𝐼3(4, 𝑉2)=12+17+12=41 

 

1 2 4 8 

1 2 4 8 

 

𝐼2(4, 𝑉2)=8+8=16 

𝐼1(4, 𝑉2)=1’dir. 

706 > 68 ∗ 30 + 41 ∗ 31 + 16 ∗ 32 + 1 ∗ 33 = 362 

 

Thus, the inequality has been established. 

 

3.1.2.      S = {(1,0), (0,1), (1,-1)}. 
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Let  vector set be S = {(1,0), (0,1), (1,-1)}. In this case, we will calculate the number of 

distinct paths on a 2D grid using these vectors. Each vector represents a possible step: 

 

 

 

For 3 row. 

 

Top row:     1 ,5 ,20, 76 …  https://oeis.org/A061278 

Middle row: 1, 4, 15,56 …  https://oeis.org/A001353 

Bottom row: 1, 2, 6, 21, 77 ,…  https://oeis.org/A101265  

It has been identified that the number sequences are present in the OEIS 

For 4 row: 

 

Third row from the bottom:  1, 6, 29,132, …  http://oeis.org/A112576 ‘The (2s+1)th 

terms of the row 

Second row from the bottom : 1, 4 ,16,67, …  http://oeis.org/A112576’ The (2s)th 

terms of the row 

It has been identified that the number sequences are found in the OEIS.. 

https://oeis.org/A061278
https://oeis.org/A001353
https://oeis.org/A101265
http://oeis.org/A112576
http://oeis.org/A112576
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3.2. Multidimensional Lattice Paths 

Multidimensional structures and tables are powerful tools for modeling and analyzing 

complex systems in various mathematical fields. These tables help to understand the  

 

relationships between multiple parameters and dimensions in a given system, 

particularly in lattice paths, multidimensional arrays, and combinatorics. 

We have extended our lattice path analysis to multidimensional space. In a d-dimensional 

space, we consider our vector set, 

 𝑉𝑑 = {(1, ℎ1, ℎ2, … , ℎ𝑑−1) ∶  1 ≤ 𝑘 ≤ 𝑑 − 1, ℎ𝑘 ∈ {−1, 0, 1}} 

The table with dimensions  (d-1)x m is referred to as a multidimensional table or 

multidimensional array, where  𝑇𝑚,𝑛
𝑑  , n×m×m×…×m    represents the total number of 

dimensions. 

It is the whole that remains in the table containing a certain x 

The A.th : 𝐴 = {𝑎ℎ: 1 ≤ ℎ ≤ 𝑑 − 1}and , 𝑇𝑚,𝑛
𝑑 ’de (𝑥, 𝑎1, 𝑎2, … 𝑎𝑑−1)  

The set of cells in the form of {cells} where the x-axis is a variable and the other axes are 

fixed, can be considered as a slice or a row of a multidimensional structure. 

y=4 
               

y=3 
               

y=2 
               

y=1 
               

𝑇4,16
2 ’ is represented  the third row 

d-face: 𝑇𝑚,𝑛
𝑑 , 1×m×m×…×m (d-1 times  m). It is the whole that remains in the table 

containing a certain x. 

 It refers to all the cells in the table that have a specific x-value. 
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x=1 x=2 x=3 x=4           
 

x=16 

 

The column shown in yellow in  𝑇5,16
2   is refer  to 1. 2-face, The column shown in blue in 

𝑇5,16
2    is refer  to 3. 2-face. 

 

The number of paths reaching a desired compartment from the 1st d-face (x=1, others take 

values between 1 and m) within 𝑇𝑚,𝑛
𝑑  in the multi-dimensional space is calculated. 

 

Figure 1. 3x3x3  Cube in 3D 

The arrow drawn on the intelligence cube indicates the x-axis. The blue-faced cubes with 

green dots have the values y=2 and z=3, they are in the (2,3)-row in 𝑇3,3
3 The red-faced cubes 

represent the 3rd 3-face. 

 

 

 3.2. 1  Calculations    3x3x3  Cube in 3D 

In this section, let's examine our theory on a cube shape, where each face contains a 3x3 grid 

of squares. 

The paths in 3D  𝑇3,𝑛
3   were calculated by a computer program. The data is given below. 

         

 
x=1 (1.3-face) x=2(2.3-face) x=3 (3.3-face) 
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Example 3. 

For example, let's find how many different ways to get to the (2,2,2) compartment in 𝑇3,𝑛
3 , 

Let's write the vectors in 3 dimensions first. 

 (1,0,0), (1,0,1), (1,0,-1), (1,1,0), (1,1,1), (1,1,-1), (1,-1,0), (1,-1,1), (1,-1,-1). 

Now let's show the 1st 3-face: 

 

 

The sections found on this page are: 

 (1,1,1), (1,1,2), (1,1,3), (1,2,1), (1,2,2), (1,2,3), (1,3,1), (1,3,2), (1,3,3) 

 

 

The paths from these compartments to compartment (2,2,2) are: 

Face Vector 
Reached 

Cell 

 (1,1,1) (1,1,1) (2,2,2) 

(1,1,2) (1,1,0) (2,2,2) 

(1,1,3) (1,1,-1) (2,2,2) 

 (1,2,1) (1,0,1) (2,2,2) 

(1,2,2) (1,0,0) (2,2,2) 

(1,2,3) (1,0,-1) (2,2,2) 

 (1,1,1

) 

(1,2,1) 

(1,3,1) 

(1,1,2) (1,1,3) 

(1,2,2) 

(1,3,2) 

(1,2,3) 

(1,3,3) 

1. 3-

face 
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(1,3,1) (1,-1,1) (2,2,2) 

(1,3,2) (1,-1,0) (2,2,2) 

(1,3,3) (1,-1,-1) (2,2,2) 

 

 

There are 9 routes in total. 

Let's color a face of a cube using recursive relations 

 

   

   

   

 

Figure 1.  A  face of  Cube 

In this section, we explore the theory applied to a cube shape, where each face is composed of 

a 3x3 grid of squares. The cube's faces are divided into different colored cells, and the 

analysis investigates the symmetry and relationships between these colored cells. 

 

Symmetry of the Cube Faces 

The top view of a 3-face cube shows the arrangement of cells in rows and columns. Due to 

the inherent symmetry in the vector set, the number of paths to each colored cell remains 

constant across different cells of the same color. 

 Red Cells: These are located in the following rows: (1,1)-row, (1,3)-row, (3,1)-row, 

and (3,3)-row. 

 Blue Cells: These are located in the (2,1)-row, (1,2)-row, (3,2)-row, and (2,3)-row. 

 Green Cells: These are located in the (2,2)-row, representing the central position on 

the grid. 

This symmetrical arrangement suggests a balance in the number of paths to each colored cell. 

 

Pell numbers are denoted by 𝑃𝑛.   Part of this sequence is as follows: 0, 1, 2, 5, 12, 29, 70, 

169… 

Half of the Pell-Lucas numbers are denoted by 𝑄𝑛  
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The Pell-Lucas sequence of numbers is      𝑎0 = 2, 𝑎1 = 2  and n≥2 için 𝑎𝑛 = 2𝑎𝑛−1 + 𝑎𝑛−2 

The sequences 𝑄𝑛  is  𝑞0 = 1, 𝑞1 = 1 ve     n≥2 için 𝑞𝑛 = 2𝑞𝑛−1 + 𝑞𝑛−2 

Part of this sequence is as follows: 1, 1, 3, 7, 17, 41, 99, 239… 

 

N 0 1 2 3 4 5 6 

Pell-Lucas 2 2 6 14 34 82 198 

𝑄𝑛  1 1 3 7 17 41 99 

 

 

 We discovered the relationships of the colored cells in Figure 1 with some number 

sequences. 

Red  cell numbers:1, 4, 25, 144 …  𝑃𝑛
2 

Blue cell numbers: 1 6 35 204 …  𝑃𝑛𝑄𝑛  

Green cell  numbers: 1 9 49 …  𝑄𝑛
2
  

Recursive form of cells. 

Red  cell numbers  𝑎1,𝑛 

Blue cell numbers  𝑎2,𝑛 

Green cell  numbers:  𝑎3,𝑛 

 Let give  information  about basic recursive relations: 

  For 𝑎1,𝑛 

   

   

   

 

   

   

   

 

A red cell in n.3-face can be reached from (n-1)rd  3-face only by 2 blue, 1 red and 1 green 

cells 

𝑎1,𝑛 = 𝑎1,𝑛−1 + 2𝑎2,𝑛−1 + 𝑎3,𝑛−1 

For 𝑎2,𝑛  

(n-1). 3-face 
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A blue cell in the nth 3rd face can be reached from only 3 blue, 2 red and 1 green cells in the 

(n-1) 3rd face.n 

𝑎2,𝑛 = 2𝑎1,𝑛−1 + 3𝑎2,𝑛−1 + 𝑎3,𝑛−1 

𝑎3,𝑛 için: 

   

   

   

 

 

 

   

   

       

 

A green cell in the nth 3rd face can be reached from all cells in the (n-1) 3rd face. 

𝑎3,𝑛 = 4𝑎1,𝑛−1 + 4𝑎2,𝑛−1 + 𝑎3,𝑛−1 

𝑎1,𝑛 = 𝑎1,𝑛−1 + 2𝑎2,𝑛−1 + 𝑎3,𝑛−1 

𝑎2,𝑛 = 2𝑎1,𝑛−1 + 3𝑎2,𝑛−1 + 𝑎3,𝑛−1 

𝑎3,𝑛 = 4𝑎1,𝑛−1 + 4𝑎2,𝑛−1 + 𝑎3,𝑛−1 

 

Recursive for red numbers: 

(n-1). 3-face 

 

(n-1). 3-yüz 

n. 3-face 

(n-1). 3-face 



Generated by the Lattice Path Problem with Various Vector Sets 

   
C.Karaçam, A.Vural.  Türkiye Mathematical Sciences, 2024, 1-4. 

18 

𝑎1,𝑛 = 𝑎3,𝑛−1 + 2𝑎2,𝑛−1 + 𝑎1,𝑛−1 = 𝑎3,𝑛−1 + 2𝑎2,𝑛−1 + 𝑎3,𝑛−2 + 2𝑎2,𝑛−2 + 𝑎1,𝑛−2

= 𝑎1,1 + ∑ 2𝑎2,𝑘 + 𝑎3,𝑘

𝑛−1

𝑘=1

= 1 + ∑ 2𝑎2,𝑘 + 𝑎3,𝑘

𝑛−1

𝑘=1

 

Note: 𝑎3,1 = 1 

Recursive for  green numbers: 

𝑎3,𝑛 = 4𝑎1,𝑛−1 + 4𝑎2,𝑛−1 + 𝑎3,𝑛−1 = 4𝑎1,𝑛−1 + 4𝑎2,𝑛−1 + 4𝑎1,𝑛−2 + 4𝑎2,𝑛−2 + 𝑎3,𝑛−2

= 1 + 4 ∑ 𝑎1,𝑘 + 𝑎2,𝑘

𝑛−1

𝑘=1

 

 

 

Sequences of cells of different colors were obtained 

Red numbers:1, 4, 25, 144 …  𝑃𝑛
2 

Blue numbers: 1, 6, 35, 204 …  𝑃𝑛 𝑄𝑛  

Green numbers : 1, 9, 49 …  𝑄𝑛
2
 

Let's obtain recursive relations for colors. 

 

Red numbers  𝑎1,𝑛 

Blue numbers  𝑎2,𝑛 

Green numbers  𝑎3,𝑛 

 

𝑎1,𝑛 = 𝑎1,𝑛−1 + 2𝑎2,𝑛−1 + 𝑎3,𝑛−1 

𝑎2,𝑛 = 2𝑎1,𝑛−1 + 3𝑎2,𝑛−1 + 𝑎3,𝑛−1 

𝑎3,𝑛 = 4𝑎1,𝑛−1 + 4𝑎2,𝑛−1 + 𝑎3,𝑛−1 

Recursive for red numbers: 

𝑎1,𝑛 = 𝑎3,𝑛−1 + 2𝑎2,𝑛−1 + 𝑎1,𝑛−1 = 𝑎3,𝑛−1 + 2𝑎2,𝑛−1 + 𝑎3,𝑛−2 + 2𝑎2,𝑛−2 + 𝑎1,𝑛−2

= 𝑎1,1 + ∑ 2𝑎2,𝑘 + 𝑎3,𝑘

𝑛−1

𝑘=1

= 1 + ∑ 2𝑎2,𝑘 + 𝑎3,𝑘

𝑛−1

𝑘=1

 

Not: 𝑎3,1 = 1 

Recursive for  green numbers: 
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𝑎3,𝑛 = 4𝑎1,𝑛−1 + 4𝑎2,𝑛−1 + 𝑎3,𝑛−1 = 4𝑎1,𝑛−1 + 4𝑎2,𝑛−1 + 4𝑎1,𝑛−2 + 4𝑎2,𝑛−2 + 𝑎3,𝑛−2

= 1 + 4 ∑ 𝑎1,𝑘 + 𝑎2,𝑘

𝑛−1

𝑘=1

 

 

Some identities have been obtained from recursive relations. 

 

Lemma 1. 

𝑃𝑛
2 = 𝑃𝑛−1

2 + 2𝑃𝑛−1𝑄𝑛−1 + 𝑄𝑛−1
2
 

Proof. 

 

It is sufficient to prove the identity 𝑃𝑛 = 𝑃𝑛−1 + 𝑄𝑛−1 

      𝐿𝑒𝑡 𝑏𝑒 𝛼 = 1 + √2 ve 𝛽 = 1 − √2. 

𝑃𝑛 =
𝛼𝑛−𝛽𝑛

2√2
 [2]  and  𝑄𝑛 =

𝛼𝑛+𝛽𝑛

2
 [3] 

 

 

=
𝛼𝑛−1 − 𝛽𝑛−1

2√2
+

𝛼𝑛−1 + 𝛽𝑛−1

2
=

𝛼𝑛−1 − 𝛽𝑛−1

2√2
+

√2(𝛼𝑛−1 + 𝛽𝑛−1)

2√2
 

=
(1 + √2)𝛼𝑛−1 − (1 − √2)𝛽𝑛−1

2√2
=

(𝛼)𝛼𝑛−1 − (𝛽)𝛽𝑛−1

2√2
. 

Lemma 2. 

2𝑃𝑛 𝑄𝑛 + 𝑄𝑛
2 = 𝑄𝑛𝑄𝑛+1 

Proof.  

Since  2𝑃𝑛 𝑄𝑛 + 𝑄𝑛
2 = 𝑄𝑛(2𝑃𝑛 + 𝑄𝑛) it is sufficient to prove  the identity 𝑄𝑛+1 = 2𝑃𝑛 + 𝑄𝑛  

  𝐿𝑒𝑡 𝑢𝑠 𝛼 = 1 + √2 ve 𝛽 = 1 − √2  

𝛼𝑛+1+𝛽𝑛+1

2
= 2

𝛼𝑛−𝛽𝑛

2√2
+

𝛼𝑛+𝛽𝑛

2
=

√2(𝛼𝑛−𝛽𝑛)

2
+

𝛼𝑛+𝛽𝑛

2
=

(1+√2)𝛼𝑛+(1−√2)𝛽𝑛

2
  

is provided, the proof is complete. 

Corollary 1. 

                        𝑷𝒏
𝟐 = 𝟏 + ∑ 𝟐𝑷𝒌 𝑸𝒌 + 𝑸𝒌

𝟐

𝒏−𝟏

𝒌=𝟏

= 𝟏 + ∑ 𝑸𝒌𝑸𝒌+𝟏

𝒏−𝟏

𝒌=𝟏
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Proof. 

We start with the following recursive relation 

                                         𝑃𝑛
2 = 𝑃𝑛−1

2 + 2𝑃𝑛−1𝑄𝑛−1 + 𝑄𝑛−1
2
      

 

To proceed, we replace 𝑃𝑛−1
2 with its own recursive expansion: 

                                         𝑃𝑛−2
2 + 2𝑃𝑛−2𝑄𝑛−2 + 𝑄𝑛−2

2
    

Substituting this into the original equation, we obtain: 

                          𝑃𝑛
2 = (2𝑃𝑛−1𝑄𝑛−1 + 𝑄𝑛−1

2) + (2𝑃𝑛−2𝑄𝑛−2 + 𝑄𝑛−2
2) + 𝑃𝑛−2

2 

 

Next, we apply the identity for 𝑃𝑛−2
2: 

 

𝑃𝑛−2
2 = 𝑃𝑛−3

2 + 2𝑃𝑛−3𝑄𝑛−3 + 𝑄𝑛−3
2  

Substituting this into the equation, we obtain 

 

𝑃𝑛
2 = (2𝑃𝑛−1𝑄𝑛−1 + 𝑄𝑛−1

2) + (2𝑃𝑛−2𝑄𝑛−2 + 𝑄𝑛−2
2) + (2𝑃𝑛−3𝑄𝑛−3 + 𝑄𝑛−3

2) + 𝑃𝑛−3
2 

This process continues recursively, and eventually, we reach the base case 𝑃1
2 Thus, the 

general form becomes: 

𝑃𝑛
2 = 1 + ∑ 2𝑃𝑘  𝑄𝑘 + 𝑄𝑘

2

𝑛−1

𝑘=1

 

Now, we use the identity: 

                                                       2𝑃𝑘 𝑄𝑘 + 𝑄𝑘
2 = 𝑄𝑘𝑄𝑘+1     

Substituting this into the summation, we obtain: 

𝑃𝑛
2 = 1 + ∑ 𝑄𝑘𝑄𝑘+1

𝑛−1

𝑘=1

 

 

Corollary 2. 

 𝑸𝒏
𝟐 = 𝟏 + 𝟒 ∑ 𝑷𝒌

𝟐 + 𝑷𝒌𝑸𝒌

𝒏−𝟏

𝒌=𝟏
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Proof. 

We are given the recursive relation for  𝑄𝑛    as: 

                                               𝑄𝑛 = 2𝑃𝑛−1 + 𝑄𝑛−1 

Squaring both sides, we obtain the expression for   𝑄𝑛
2: 

                                                   𝑄𝑛
2 = (2𝑃𝑛−1 + 𝑄𝑛−1)2 

Expanding the right-hand side, we get: 

                                            𝑄𝑛
2 = 4𝑃𝑛−1

2 + 4𝑃𝑛−1𝑄𝑛−1 + 𝑄𝑛−1
2
 

 Next, we replace   𝑄𝑛−1
2
 using its recursive relation: 

                                     𝑄𝑛−1
2 = 4𝑃𝑛−1

2 + 4𝑃𝑛−2𝑄𝑛−2 + 𝑄𝑛−2
2
        

Substituting this into the original equation for 𝑄𝑛
2    we obtain: 

                          

   𝑄𝑛
2 = (4𝑃𝑛−1

2 + 4𝑃𝑛−1𝑄𝑛−1)+(4𝑃𝑛−2
2 + 4𝑃𝑛−2𝑄𝑛−2) + 𝑄𝑛−2

2
 

 

At this point, we continue the substitution process, replacing  𝑄𝑛−2
2
 with its own recursive  

expression:  

                     𝑄𝑛−2
2 = 4𝑃𝑛−2

2 + 4𝑃𝑛−3𝑄𝑛−3 + 𝑄𝑛−3
2
        

This leads to 

  𝑄𝑛
2 = (4𝑃𝑛−1

2 + 4𝑃𝑛−1𝑄𝑛−1)+(4𝑃𝑛−2
2 + 4𝑃𝑛−2𝑄𝑛−2) + ( 4𝑃𝑛−2

2 + 4𝑃𝑛−3𝑄𝑛−3) + 𝑄𝑛−3
2
 

We can continue this process, replacing 𝑄𝑛−𝑠
2
  with its recursive expansion until we reach  

𝑄1
2
 After continuing this process, we can write the final expression as: 

𝑄𝑛
2 = 1 + 4 ∑ 𝑃𝑘

2 + 𝑃𝑘𝑄𝑘

𝑛−1

𝑘=1

 

 3.2. 3  Calculations    4x4x4  Cube in 3D 

In this section, recursive relations and identities will be examined on a cube with a face 

consisting of a 4x4 grid of square cells. 

3 dimensional  𝑇4,𝑛
3 : 
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𝑇4,𝑛
3  in 3  dimensional   

 

𝐹𝑛 is the n-th Fibonacci number. 

Red numbers : 1 4 25 169 …  𝐹2𝑛−1
2   This sequence is denoted as  𝑎1,𝑛  

Blue numbers: 1 6 40 273 1870 …  𝐹2𝑛−1𝐹2𝑛 This sequence is denoted as  𝑎2,𝑛 

Green numbers: 1 9 64 441 …  𝐹2𝑛
2 This sequence is denoted as  𝑎3,𝑛. 

Let's derive the fundamental recursive relations. 

 

𝑎1,𝑛 = 𝑎1,𝑛−1 + 2𝑎2,𝑛−1 + 𝑎3,𝑛−1 

𝑎2,𝑛 = 𝑎1,𝑛−1 + 3𝑎2,𝑛−1 + 2𝑎3,𝑛−1 

𝑎3,𝑛 = 𝑎1,𝑛−1 + 4𝑎2,𝑛−1 + 4𝑎3,𝑛−1 

The recursive relations are as follows: 

𝑎3,1=1 

𝑎3,𝑛 = 𝑎1,𝑛−1 + 4𝑎2,𝑛−1 + 4𝑎3,𝑛−1 

= 𝑎1,𝑛−1 + 4𝑎2,𝑛−1 + 4(𝑎1,𝑛−2 + 4𝑎2,𝑛−2 + 4𝑎3,𝑛−2) 

= 𝑎1,𝑛−1 + 4𝑎2,𝑛−1 + 4𝑎1,𝑛−2 + 16𝑎2,𝑛−2 + 16𝑎3,𝑛−2 

= 𝑎1,𝑛−1 + 4𝑎2,𝑛−1 + 4𝑎1,𝑛−2 + 16𝑎2,𝑛−2 + 16(𝑎1,𝑛−3 + 4𝑎2,𝑛−3 + 4𝑎3,𝑛−3) 

x=1 (1. 3-face) x=2 (2. 3-face) x=3 (3. 3-face) 
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= 𝑎1,𝑛−1 + 4𝑎2,𝑛−1 + 4𝑎1,𝑛−2 + 16𝑎2,𝑛−2 + 16𝑎1,𝑛−3 + 64𝑎2,𝑛−3 + 64𝑎3,𝑛−3 

= 4𝑛−1𝑎3,1 + ∑ 4𝑘−1𝑎1,𝑛−𝑘 + 4𝑘𝑎2,𝑛−𝑘

𝑛−1

𝑘=1

 

 

Corollary 3. 

𝐹2𝑛
2 = 4𝑛−1 + ∑ 4𝑘−1𝐹2𝑛−2𝑘−1

2 + 4𝑘

𝑛−1

𝑘=1

𝐹2𝑛−2𝑘−1𝐹2𝑛−2𝑘 

Proof. 

We aim to prove the following identity using mathematical induction 

First, let's verify the identity for the base case when p=2  

 

𝐹2𝑝
2 = 4𝑝−1 + ∑ 4𝑘−1𝐹2𝑝−2𝑘−1

2 + 4𝑘

𝑝−1

𝑘=1

𝐹2𝑝−2𝑘−1𝐹2𝑝−2𝑘 

𝐹2.2
2 = 42−1 + ∑ 4𝑘−1𝐹2.2−2𝑘−1

2 + 4𝑘

2−1

𝑘=1

𝐹22−2𝑘−1𝐹2.2−2𝑘 

This simplifies further as: 

𝐹4
2=4+(40⋅𝐹1

2 + 41)𝐹1𝐹2=32=4+(1 + 4)1.1= 9 

 

Thus, the base case holds. 

Assume that the formula holds for some p. That is, assume the following: 

𝐹2𝑝
2 = 4𝑝−1 + ∑ 4𝑘−1𝐹2𝑝−2𝑘−1

2 + 4𝑘

𝑝−1

𝑘=1

𝐹2𝑝−2𝑘−1𝐹2𝑝−2𝑘 

Now, we need to prove that the formula holds for  p+1. We begin with the following 

expression: 

 

𝐹2𝑝+2
2 = 4𝑝 + ∑ 4𝑘−1𝐹2𝑝−2𝑘+1

2 + 4𝑘

𝑝

𝑘=1

𝐹2𝑝−2𝑘+1𝐹2𝑝−2𝑘+2 

Now, shift the summation index by setting k=k+1,  so the index range becomes from 0 to 

p−1. 
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𝐹2𝑝+2
2 = 4𝑝 + ∑ 4𝑘𝐹2𝑝−2𝑘−1

2 + 4𝑘+1

𝑝−1

𝑘=0

𝐹2𝑝−2𝑘−1𝐹2𝑝−2𝑘 

Expanding the left-hand side: 

𝐹2𝑝
2 + 2𝐹2𝑝𝐹2𝑝+1 + 𝐹2𝑝+1

2 = 4𝑝 + ∑ 4𝑘𝐹2𝑝−2𝑘−1
2 + 4𝑘+1

𝑝−1

𝑘=0

𝐹2𝑝−2𝑘−1𝐹2𝑝−2𝑘 

Now, subtract 𝐹2𝑝
2  from both sides: 

 2𝐹2𝑝𝐹2𝑝+1 + 𝐹2𝑝+1
2 = 

= 4𝑝 − 4𝑝−1 + ∑ 4𝑘𝐹2𝑝−2𝑘−1
2 + 4𝑘+1𝐹2𝑝−2𝑘−1𝐹2𝑝−2𝑘

𝑝−1

𝑘=0

= 3 ∗ 4𝑝−1 + 𝐹2𝑝−1
2   + 4𝐹2𝑝−1𝐹2𝑝

+ 3 ∑ 4𝑘−1𝐹2𝑝−2𝑘−1
2 + 4𝑘

𝑝−1

𝑘=1

𝐹2𝑝−2𝑘−1𝐹2𝑝−2𝑘 

 

Now, subtract 𝐹2𝑝−1
2 + 4𝐹2𝑝−1𝐹2𝑝  from both sides 

 

2𝐹2𝑝𝐹2𝑝+1 + 𝐹2𝑝+1
2 − 𝐹2𝑝−1

2 − 4𝐹2𝑝−1𝐹2𝑝

= 3(4𝑝−1 + ∑ 4𝑘−1𝐹2𝑝−2𝑘−1
2 + 4𝑘

𝑝−1

𝑘=1

𝐹2𝑝−2𝑘−1𝐹2𝑝−2𝑘) 

Finally, simplify the right-hand side: 

3𝐹2𝑝
2.  More clearly, 

2𝐹2𝑝𝐹2𝑝+1 + 𝐹2𝑝+1
2 − 𝐹2𝑝−1

2 − 4𝐹2𝑝−1𝐹2𝑝 = 3𝐹2𝑝
2 

2𝐹𝑠𝐹𝑠+1 + 𝐹𝑠+1
2 − 𝐹𝑠−1

2 − 4𝐹𝑠−1𝐹𝑠 = 2𝐹𝑠𝐹𝑠+1 + 𝐹𝑠+1
2 − 𝐹𝑠−1𝐹𝑠+1 − 3𝐹𝑠−1𝐹𝑠

= 2𝐹𝑠𝐹𝑠+1 + 𝐹𝑠+1
2 − 𝐹𝑠−1𝐹𝑠+2 − 2𝐹𝑠−1𝐹𝑠 = 2𝐹𝑠

2 + 𝐹𝑠+1
2 − 𝐹𝑠−1𝐹𝑠+2

= 2𝐹𝑠
2 + 𝐹𝑠+1

2 − 𝐹𝑠−1𝐹𝑠+1 − 𝐹𝑠−1𝐹𝑠 = 2𝐹𝑠
2 + 𝐹𝑠𝐹𝑠+1 − 𝐹𝑠−1𝐹𝑠 = 3𝐹𝑠

2 

 

This completes the inductive step, and hence the identity holds for p+1. 
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3.2. 4  Calculations    5x5x5  Cube in 3D 

In this section, let's examine our theory on a cube shape, where each face contains a 5x5 grid 

of squares. 

 

𝑇5,𝑛
3  in 3  dimensional   

     

     

     

     

     

  

Yellow numbers : 1, 4, 25, 169, 1225, 9025, 67081, 499849, 3728761, 27825625, 

207676921, 1550075641 

Green numbers: 1, 6, 40, 286, 2100, 15580, 116032, 865368, 6457264, 48192400, 

359698560 

Orange numbers: 1, 6, 45, 325, 2415, 17955, 133903, 998991, 7455591, 55645975, 

415339431 

Blue numbers: 1, 9, 64, 484, 3600, 26896, 200704, 1498176, 11182336, 83466496, 

623001600 

Purple number: 1,  9, 72, 550, 4140, 30996, 231616, 1729512, 12911184, 96375664 

 Red numbers: 1, 9, 81, 625, 4761, 35721, 267289, 1996569, 14907321, 111281401 

It was seen that the number patterns found were in the form of products of number patterns in 

𝑇5,𝑛
2  For example, red numbers in 3 dimensions are the square of red numbers in 2 

dimensions. Green numbers in 3 dimensions are multiplied by a blue number and a yellow 

number in 2 dimensions. 

The table formed by using the 𝑉2 vector set in 2 dimensions 

 

1 2 5 13 35 95 259 707 1931 

1 3 8 22 60 164 448 1224 3344 

1 3 9 25 69 189 517 1413 3861 
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1 3 8 22 60 164 448 1224 3344 

1 2 5 13 35 95 259 707 1931 

𝑵𝒐𝒕𝒆𝟐 .The numbers in 𝑇3,𝑛
3  ve 𝑇4,𝑛

3 T were also the product of their 2-dimensional states. 

Note3. The numbers in 𝑇𝑚,𝑛
3  ve 𝑇𝑚,𝑛

3   were also the product of their 2-dimensional states. 

Corollary4. In 𝑇𝑚,𝑛
𝑑  , the (ℎ1, ℎ2, … , ℎ𝑑−1)-th row's s-th element is equal to the product of 

the s-th elements of the(ℎ1)-th row, (ℎ2)-th row, ..., and (ℎ𝑑−1)- th row in T(m,n) . 

Proof. 

Let's prove this for a three-dimensional table. 

In 𝑇𝑚,𝑛
3 , to reach the cell( (𝑠, ℎ1, ℎ2)  we can break the movement into two types: movement 

along the y-axis and movement along the z-axis. 

Movement along the y-axis: Ignoring the z-axis, the movement is from the point (1,1,z) to 

(𝑠, ℎ1, 𝑧)As we can see, this movement is two-dimensional. The number of paths between 

these two points corresponds to the s-th element of the (ℎ1)-th row in 𝑇𝑚,𝑛
2  

Movement along the z-axis: Ignoring the y-axis, the movement is from the point (1,y,1)to 

(s,y,ℎ2). Similarly, this is a two-dimensional movement. The number of paths between these 

points corresponds to the sss-th element of the (ℎ2)-th row in 𝑇𝑚,𝑛
2  

The movements along the y-axis and z-axis are independent events. Each vector in the vector 

set progresses the same distance along the x-axis (1 unit). The vector can move -1, 0, or 1 unit 

along the y-axis, but the choice of movement along the y-axis does not affect the movement 

along the z-axis. Similarly, the movement along the z-axis can also be -1, 0, or 1 unit. 

A similar approach can be applied to a table in n dimensions. As the number of dimensions 

increases, the number of axes increases, and movement along each axis remains independent 

of the others. Therefore, the s-th element of the (ℎ1)-th row, (ℎ2)-th row, ..., and (ℎ𝑑−1)-th row 

in 𝑇𝑚,𝑛
2  will be multiplied. 

3.2.5 Algorithm software 

Codes for Section 3.1 

We used the following python program to calculate tables for  

S = {(1,0), (0,1), (1,1), (1,-1)}. 

from prettytable import PrettyTable 

 

m=3 # rows 
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n=7 # columns 

 

table_columns=[] 

for h in range (0,n): 

    table_columns.append(""+str(h)) 

table = PrettyTable(table_columns) # Create the table with columns 

named from 1 to n 

 

first_column=[1 for i in range(m)] 

column_list=[first_column] # Initialize the column_list with the first 

column being 1,1,1,... 

 

# Generate other columns up to n 

for a in range(1,n): 

    precolumn=column_list[a-1] # previous column 

    currcolumn=[precolumn[0]+precolumn[1]] # Initialize the current 

column with the bottom element 

    for i in range(1,m-1): 

        currcolumn.append(currcolumn[i-1]+precolumn[i-

1]+precolumn[i]+precolumn[i+1]) # Apply the recursive formula 

    currcolumn.append(currcolumn[m-2]+precolumn[m-2]+precolumn[m-1]) 

    column_list.append(currcolumn) 

 

# Turn the column_list to a row list for creating the table. 

row_list=[] 

for i in range(m): 

    currrow=[] 

    for a in range(n): 

        currrow.append(column_list[a][i]) 

    row_list.append(currrow) 
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for b in range(1,m+1): 

    table.add_row(row_list[-b]) 

print(table) 

 

 

The code for S = {(1,0), (0,1), (1,-1)} only requires a slight adjustment: 

 

# Generate other columns up to n 

for a in range(1,n): 

    precolumn=column_list[a-1] # previous column 

    currcolumn=[precolumn[0]+precolumn[1]] # Initialize the current 

column with the bottom element 

    for i in range(1,m-1): 

        currcolumn.append(currcolumn[i-1]+precolumn[i]+precolumn[i+1]) 

# Apply the recursive formula 

    currcolumn.append(currcolumn[m-2]+precolumn[m-1]) 

    column_list.append(currcolumn) 

 

Code for Section 3.2 

We used the following code to generate the faces of cubes. 

x=3 # x 

y=3 # y 

z=5 # z or the index that faces will be generated up to 

 

first_face=[] 

row1=[] 

# Create the first face that consists of only 1s. 

for i in range(x): 

    row1.append(1) 

for i in range(y): 
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    first_face.append(row1) 

 

presurface = first_face # Store the previous face, initially it is the 

first face 

 

# Generate other faces up to index z 

for i in range(1,z): 

    cursurface=[] 

 

    # First row 

    

frow=[presurface[0][0]+presurface[0][1]+presurface[1][0]+presurface[1][

1]] 

    for b in range(1,x-1): 

        frow.append(presurface[0][b]+presurface[0][b-

1]+presurface[0][b+1]+presurface[1][b]+presurface[1][b+1]+presurface[1]

[b-1]) # Recursive formula 

    frow.append(presurface[0][x-1]+presurface[0][x-2]+presurface[1][x-

1]+presurface[1][x-2]) 

    cursurface.append(frow) 

    print(frow) 

 

     # Midle rows (not generated for y<=2) 

    if y>2: 

        for r in range(1,y-1): 

            mrow=[] 

            # Apply the recursive formula with separate formulas for 

edges 

            for b in range(x): 

                if b==0: 
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mrow.append(presurface[r][0]+presurface[r][1]+presurface[r-

1][0]+presurface[r-1][1]+presurface[r+1][1]+presurface[r+1][0]) 

                elif b==x-1: 

                    mrow.append(presurface[r][x-1]+presurface[r][x-

2]+presurface[r-1][x-1]+presurface[r-1][x-2]+presurface[r+1][x-

1]+presurface[r+1][x-2]) 

                else: 

                    mrow.append(presurface[r][b]+presurface[r][b-

1]+presurface[r][b+1]+presurface[r-1][b]+presurface[r-

1][b+1]+presurface[r-1][b-

1]+presurface[r+1][b]+presurface[r+1][b+1]+presurface[r+1][b-1]) 

            print(mrow) 

            cursurface.append(mrow) 

 

    #Last row 

    lrow=[presurface[y-1][0]+presurface[y-1][1]+presurface[y-

2][0]+presurface[y-2][1]] 

    for b in range(1,x-1): 

        lrow.append(presurface[y-1][b]+presurface[y-1][b-

1]+presurface[y-1][b+1]+presurface[y-2][b]+presurface[y-

2][b+1]+presurface[y-2][b-1]) 

    lrow.append(presurface[y-1][x-1]+presurface[y-1][x-2]+presurface[y-

2][x-1]+presurface[y-2][x-2]) 

    cursurface.append(lrow) 

    print(lrow) 

 

    print("") # Print empty line to separate faces 

    presurface = cursurface # Update the previous face 
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4. DISCUSSION 

In a two-dimensional table, the Fibonacci, Pell, and Pell-Lucas sequences and their products 

and powers have been obtained. By changing the vector set in the two-dimensional table, the 

Tetrabonacci sequence can be reached. 

As shown in Corollary  4, the numbers in𝑇𝑚,𝑛
𝑑  are products of the numbers in 𝑇𝑚,𝑛

2 .  This 

result holds true when all vectors in a well-defined vector set advance the same unit along the 

x-axis (the important factor is not how many units they move, but that they move the same 

number of units).  However, there are also well-defined vector sets where the x-axis is not a 

fixed number. Studies can be conducted to explore the relationship between the numbers in 

these vector sets in two-dimensional tables and multi-dimensional tables. 

In these studies, matrices and linear algebra can be used to further investigate the connections 

and properties of these sequences. 
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