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1. INTRODUCTION 

In this work, we investigate the following the initial-boundary value problem of a 
singular parabolic m-biharmonic equation with logarithmic nonlinearity  
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The equations with m-biharmonic operators models physical phenomena in many 
fields, such as the traveling wave in suspension bridges [10], the theory of 
pseudoplastic non-Newtonian fluid [13], phase transformation [14]. 
In 2021, Han [8] proved the following the equation of the form 

( ) ( ).2 zftkzzt =+  

He established the explosion in finite time using differential inequalities. Furthermore, 
he derived both upper and lower limits for the time at which the explosion happens. 
Han [7] studied the following the equation of the form 
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He proved the upper and lower bounds on the blow-up time of weak solutions. 
In 2021, Thanh et al. [17] considered the reaction-diffussion parabolic problem with 
time dependent coefficients 
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They proved the upper and lower bound for blow-up time. Problems with variable 
coefficients have been handled carefully in several papers, some results relating the 
local existence, global existence, blow up and stability have been found [4, 5, 6, 7, 
15, 17]. 
In 2023, Wu et al. [19] investigated the following fourth-order parabolic equation 
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They obtained finite-time blowup results of weak solutions using the Galerkin method 
and determined upper and lower bounds for the blowup time. 
In 2020, Deng and Zhou [2] considered the following of singular and nonlinear 
parabolic equations with logarithmic source term 

.ln zzz
x

z
s

t =+  

They obtained infinite time blow-up of the solutions and the global existence. 
In 2024, Yang [21] considered the following  −p  Laplacian type pseudo-parabolic 

equation with singular potential and logarithmic nonlinearity 
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He has established a new criterion for solutions to blow up in finite time using 
Gagliardo-Nirenberg's interpolation inequality and inverse Sobolev inequality. 

In [18], Thanh et al. proved the higher-order version  ( )
−2m

  of the  −p  Laplacian 

and the function  ( )tk   non- newtonian filtration equation and obtained the blow-up 

result with lower and upper bounded. 
In 2023, Liu and Fang [12] investigated the following of singular parabolic p-
biharmonic equation with logarithmic nonlinearity 

( ) .log
22

zzzz
x

z qp

s

t −−
=+  

They obtained the global solvability, infinite and finite time blow-up phenomena and 
derive the upper bound of blow-up time as well as the estimate of blow-up rate. 
Furthermore, the results of blow-up with arbitrary initial energy and extinction 
phenomena are presented. 
In 2024, Wu et al. [20] considere the following  −p  Laplacian equation with singular 

potential and logarithmic nonlinearity 
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They established the results of the decay and the blow-up of solutions with arbitrary 
initial energy and the conditions of extinction. 
This work is organized as follows: 
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• In part 2, we give some assumptions needed in this work. 

• In Part 3, we investigate decay of solutions by using the Komornik's inequality. 
 
 

2. MATERIALS and METHODS 

In this part, we present certain lemmas and assumptions required for the formulation 

and proof of our results. Let  ,.    
p

.   and  
( )rmW ,.   indicate the typical  ( ),2 L    

( )rL   and  ( )rmW ,   norms (see [1, 3]). By problem (5), assume that  r   and  ( ).g   

satisfy the following conditions: 

Multiplying equation (5) by  tz   and integrating over   ),,0 t   we have  
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For each  ( ) ( ) rLHz 2

0   and   ) ,0t   define the functinals of the problem (5) 

following: 
 
Energy functional is as follows: 
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and Nehari functional is as follows: 
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Then it follows from (12) and (14) that 
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Furthermore, we introduce the Nehari manifoldW 
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The depth of potential well is defined as follows: 



Decay of solutions for a singular parabolic m-biharmonic equation with logarithmic 
nonlinearity,    
A.Fidan, E.Pişkin.  Türkiye Mathematical Sciences, 2024, 1-11. 

4 

( ).inf
N

zJd
z

=  

 
Now, we give some definitions. 
 
 Definition 1 (Weak solution) A function  z   is called a weak solution to equation (5) 

if  ( ) ( )( )  rLHTLz 2

0;,0   and  ( )( ) 22 ;,02/ LTLs
t

x
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After that, in Lemma 2, we outline some fundamental properties of the fiber mapping  

( )zJ    that can be verified directly. 

 Lemma 2 Assume that  ( )  ,0\0  mHz   then 
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(iii)  ( )zJ    is increasing on  ,0 +    and attains the maximum at  .=    
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where  .0   Therefore, it is evident that the conclusion of (i) is valid 

(ii) By differentiating  )( zJ    at     we get:𝒜 
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Therefore (ii) is valid. 
(iii) From the definition of  ( ),zI   we get 
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here  .0   When combined with (ii), result (iii) holds. 

 

 Lemma 3 Let  Xz   satisfy  ( ) .0zI   Later, there exists a  ( )1,0   such that  
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Combining (33),(36) and from the above equation, we can deduce that there is  
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( )1,0   so that  
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and  ( ) .0=zI    The proof is completed. 

 
 Lemma 4 Suppose that (A1) and (A2) hold and  ( )txz ,   be a weak solution of 

problem (5). Then,  ( )tE   is nonincreasing function, that is 
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 Proof Multiplying the equation (5) with  tz   and integrating with respect to  x   over 
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Through direct calculation, for the third term from the left it can be seen that 
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The proof is completed. 
 

 Lemma 5 Assume that  .0 Xz    Later, 

 ( )i   the solution  z   of problem 5 with  
+ 110 WWz   satisfies that  ( ) + 11 WWtz   for 

all   .,0  Tt   

 ( )ii   the solution  z   of problem 5 with  
− 110 WWz   satisfies that  ( ) − 11 WWtz   for 

all   .,0  Tt   

 Proof  ( )i   Suppose that  ( )tz   be the weak solution by problem 5 with  ,110

+ WWz   

The meaning is that  ( ) ,0 dzJ     ( ) .00 zI   The time variable on  ),0( t   is integrated 

on both sides with respect to  t   39, we have 
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Next, we assert that  ( )( )tzI   0   for all    Tt ,0  , which, combined with equation 

(45), implies that  ( ) 21, WWtxz    . Otherwise, by the continuity of  ( )zI  , there would 

exist a time  ( ) Tt ,00   such that  ( )( ) 0tzI   for   )0,0 tt   and  ( )( ) 00 =tzI   while  

( ) 00 tz  . This would imply that  ( ) N0 tz  . Referring to the definition of  d  , it is 

evident that  d ( )( )0tzJ   which leads to a contradiction with equation  d ( )( )0tzJ  . 
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Therefore,  ( ) + 11 WWtz   for all   .,0  Tt   

 ( )ii   Since the proof is similar to part  ),(i   we skip it.     

 Lemma 6 (  see [12] )   (Hardy-Sobolev Inequality). Suppose that  ,: kNkN RRR −   
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We introduce the following inequality to address the logarithmic nonlinearity. 
 Lemma 8 [11] Assume that     is a positive number. Then we have the following 

inequalities: 
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 Lemma 9 [9]. Assume that  ++ → RRf :   be a nonincreasing function and     be a 

positive constant so that: 
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(ii)  ( ) ( )( ) ,0
1

1
1 




tftf +
+   for all  ,0t   whenever  .0   

We demonstration from Theorem 10 that the norm  
( )2

0H
z  decays exponentially to 

problem (5). 
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3. DECAY 

In this part, we show the decay of weak solution to problem (5). 

 
 
 Theorem 10 Assume that  ( )tz   be the solution to problem (5) and  rm,   satisfy if  

,W10

+z   then 

( )
.0 ,

21

1
2

1

3

2

0

2












−+

−


−

t
tmc

m
zz

m

m
 

here  3C   is exist positive constant, such that  ,2=m   then there exist positive 

constants  
4C  , 

( )
.0 ,42

1 12

0

2


−
tezz

tC

m
 

 

 Proof We know from the results of  
+ 10 Wz   and global weak solutions that  

( ) + 1Wtz  . From here, from (12), we get 

( )( ) ( ) .
111

02
dzJtzJz

r
z

rm

r

r

m

m
+








−  

 
By a direct calculation we arrive at the following conclusion: 
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From equation (14) and Lemma 8, we get 
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here  ,C
24

CR +
= n    𝐶  is the optimal embedding constant. 

From (74) and (76), we obtain 
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assume that  +→T   in (78), by virtue of Lemma 9, it follows that 
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The proof of Theorem 10 has been completed. 
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